Приведенная энергия гиббса. Энергия гиббса реакции

Все химические реакции обычно сопровождаются изменением как энтропии, так и энтальпии. Связь между энтальпией и энтропией системы устанавливает термодинамическая функция состояния, которая называется свободной энергией Гиббса или изобарно-изотермическим потенциалом (G). Она характеризует направление и предел самопроизвольного протекания процессов в изобарно-изотермических условиях (р = const и Т = const). С энтальпией и энтропией системы свободная энергия Гиббсасвязана соотношением

G = H – TS. (9)

Абсолютное значение измерить невозможно, поэтому используется изменение функции в процессе протекания того или иного процесса:

DG = DH – TDS. (10)

Свободная энергия Гиббса измеряется в кДж/моль и кДж. Физический смысл свободной энергии Гиббса: свободная энергия системы, которая может быть превращена в работу. Для простых веществ свободная энергия Гиббса принимается равной нулю.

Знак изменения свободной энергии Гиббса DG и ее величина при Р = const определяют термодинамическую устойчивость системы:

· если в химическом процессе происходит снижение свободной энергии Гиббса, т.е. DG < 0, процесс может протекать самопроизвольно, или говорят: процесс термодинамически возможен;

· если продукты реакции имеют больший термодинамический потенциал, чем исходные вещества, т.е. DG >

· если DG = 0, то реакция может протекать как в прямом, так и в обратном направлении, т.е. реакция обратима.

Следовательно, самопроизвольные процессы при Р=const идут с уменьшением свободной энергии Гиббса. Этот вывод справедлив как для изолированных, так и для открытых систем.

Изменение энергии Гиббса системы при образовании 1 моль вещества из простых веществ, устойчивых в данных условиях, называется энергией Гиббса образования вещества DG обр. , измеряется в кДж/моль.

Если вещество находится в стандартных условиях, то энергия Гиббса образования называется стандартной энергией Гиббса образования вещества (DG 0 обр.298). Стандартная энергия Гиббса образования простого вещества, устойчивого в стандартных условиях, равна нулю. Значения DG 0 обр.298 веществ приводятся в справочниках.



Изменение энергии Гиббса, как и изменение энтальпии и энтропии, не зависит от пути процесса, поэтому изменение энергииГиббса химической реакции DG равно разности между суммой энергий Гиббса образования продуктов реакции и суммой энергий Гиббса образования исходных веществ с учетом стехиометрических коэффициентов:

DG 0 298 = S(n i . DG i 0 298) пр. - S(n i . D G i 0 298) исх. . (11)

Свободная энергия Гельмгольца

Направление протекания изохорных процессов (V = const и Т = const) определяется изменением свободной энергии Гельмгольца, которую называют также изохорно-изотермический потенциал (F):

DF = DU – TDS.

Знак изменения свободной энергии Гельмгольца DF и ее величина при V = const определяют термодинамическую устойчивость системы:

· если в химическом процессе происходит снижение свободной энергии Гельмгольца, т.е. D F < 0, процесс может протекать самопроизвольно, или говорят: процесс термодинамически возможен;

· если продукты реакции имеют больший термодинамический потенциал, чем исходные вещества, т.е. D F > 0, процесс протекать самопроизвольно не может, или говорят: процесс термодинамически невозможен;

· если D F = 0, то реакция может протекать как в прямом, так и в обратном направлении, т.е. реакция обратима.

Следовательно, самопроизвольные процессы при V=const идут с уменьшением свободной энергии Гельмгольца. Этот вывод справедлив как для изолированных, так и для открытых систем.


ХИМИЧЕСКАЯ КИНЕТИКА

Основные понятия химической кинетики

Химическая кинетика – раздел химии, изучающий скорости и механизмы химических реакций.

Различают гомогенные и гетерогенные химические реакции:

· гомогенные реакции протекают в однородной среде во всем объеме системы (это реакции в растворах, в газовой фазе);

· гетерогенные реакции протекают в неоднородной среде, на границе раздела фаз (горение твердого или жидкого вещества).

Основным понятием химической кинетики является понятие о скорости химической реакции. Под скоростью химической реакции понимается число элементарных актов взаимодействия в единицу времени в единице объема (если реакция гомогенная) или число элементарных актов взаимодействия в единицу времени на единицу поверхности раздела фаз (если реакция гетерогенная).

Скорость реакции характеризуют изменением концентрации какого-либо из исходных веществ или конечных продуктов реакции в единицу времени и выражают: для гомогенных реакций – моль/л·с (моль/м 3 ·с и т.д.), для гетерогенных – моль/см 2 ·с (моль/м 2 ·с).


Различают среднюю и истинную (мгновенную) скорость реакции. Из зависимостей, представленных на рис. 6.1, следует: при химическом взаимодействии концентрация каждого из исходных веществ (кривая 1) уменьшается во времени (С 2 <С 1 , DС<0), а концентрация каждого из продуктов реакции (кривая 2) возрастает (С` 2 >С` 1 , DС>0). Следовательно, среднюю скорость (V ср) в интервале времени t 1 ÷ t 2 можно выразить следующим образом:

V ср =± (С 2 – С 1)/(t 2 - t 1) = ± DС/Dt. (1)

Средняя скорость является грубым приближением, т.к. в интервале времени t 1 ÷ t 2 она не остается постоянной. Истинная или мгновенная скорость в момент времени t (V) определяется следующим образом:

V = lim (± DС/D t) = ± dС/dt = ± С" t = tg a, (2)

т.е. мгновенная скорость химической реакции равна первой производной от концентрации одного из веществ по времени и определяется как tg угла наклона касательной к кривой С А = f (t) в точке, соответствующей данному моменту времени t: dС/dt = tga.

Скорость химической реакции зависит от различных факторов:

Природы реагирующих веществ;

Их концентрации;

Температуры протекания процесса;

Присутствия катализатора.

Рассмотрим более подробно влияние каждого из перечисленных факторов на скорость химической реакции.

любая химическая реакция сопровождается выделением или поглощением энергии. Чаще всего энергия выделяется или поглощается в виде теплоты (реже - в виде световой или механической энергии). Эту теплоту можно измерить. Результат измерения выражают в килоджоулях (кДж) для одного моля реагента или (реже) для моля продукта реакции. Такая величина называется тепловым эффектом реакции.

    Тепловой эффект - количество теплоты, выделившееся или поглощенное химической системой при протекании в ней химической реакции.

Тепловой эффект обозначается символами Q или DH (Q = -DH). Его величина соответствует разности между энергиями исходного и конечного состояний реакции:

DH = H кон. - H исх. = E кон. - E исх.

Значки (г), (ж) обозначают газообразное и жидкое состояние веществ. Встречаются также обозначения (тв) или (к) - твердое, кристаллическое вещество, (водн) - растворенное в воде вещество и т.д.

Обозначение агрегатного состояния вещества имеет важное значение. Например, в реакции сгорания водорода первоначально образуется вода в виде пара (газообразное состояние), при конденсации которого может выделиться еще некоторое количество энергии. Следовательно, для образования воды в виде жидкости измеренный тепловой эффект реакции будет несколько больше, чем для образования только пара, поскольку при конденсации пара выделится еще порция теплоты.

Используется также частный случай теплового эффекта реакции - теплота сгорания. Из самого названия видно, что теплота сгорания служит для характеристики вещества, применяемого в качестве топлива. Теплоту сгорания относят к 1 молю вещества, являющегося топливом (восстановителем в реакции окисления), например:

Запасенную в молекулах энергию (Е) можно отложить на энергетической шкале. В этом случае тепловой эффект реакции (Е) можно показать графически

Этот закон был открыт Гессом в 1840 г. на основании обобщения множества экспериментальных данных.

7.Энтропия. Свободная энергия Гиббса. Термодинамический критерий направленности химического процесса.

Энтропия - это сокращение доступной энергии вещества в результате передачи энергии. Первый закон термодинамики гласит, что энергию невозможно создать или уничтожить. Следовательно, количество энергии во вселенной всегда такое же, как было и при ее создании. Второй закон термодинамики гласит, чтокоэффициентполезного действия ни одного реального (необратимого) процесса не может быть 100% при преобразовании энергии в работу.

где ΔS - изменение энтропии, ΔQ - изменениетеплоты,T - абсолютная термодинамическая температура.

Следовательно, количество энергии для преобразования в работу или теплоту непрерывно уменьшается со временем, так как теплота спонтанно переходит из более теплой области к более холодной

Энергия Гиббса и направление протекания реакции

В химических процессах одновременно действуют два противоположных фактора - энтропийный () иэнтальпийный (). Суммарный эффект этих противоположных факторов в процессах, протекающих при постоянном давлении и температуре, определяет изменениеэнергии Гиббса ():

Из этого выражения следует, что , то есть некотороеколичество теплотырасходуется на увеличение энтропии (), эта часть энергии потеряна для совершения полезнойработы(рассеивается в окружающую среду в виде тепла), её часто называютсвязанной энергией. Другая часть теплоты () может быть использована для совершения работы, поэтому энергию Гиббса часто называют также свободной энергией.

Характер изменения энергии Гиббса позволяет судить о принципиальной возможности осуществления процесса. При процесс может протекать, припроцесс протекать не может (иными словами, если энергия Гиббса в исходном состоянии системы больше, чем в конечном, то процесс принципиально может протекать, если наоборот - то не может). Если же, то система находится в состояниихимического равновесия.

Свободная энергия Гиббса (или простоэнергия Гиббса , илипотенциал Гиббса , илитермодинамический потенциал в узком смысле) - это величина, показывающая изменение энергии в ходе химической реакции и дающая таким образом ответ на вопрос о принципиальной возможности протекания химической реакции; этотермодинамический потенциалследующего вида:

Энергию Гиббса можно понимать как полную химическуюэнергиюсистемы (кристалла, жидкости и т. д.)

Понятие энергии Гиббса широко используется в термодинамикеихимии.

Самопроизвольное протекание изобарно-изотермического процесса определяется двумя факторами: энтальпийным, связанным с уменьшением энтальпиисистемы (ΔH), и энтропийным T ΔS, обусловленным увеличением беспорядка в системе вследствие роста еёэнтропии. Разность этих термодинамических факторов является функцией состояния системы, называемой изобарно-изотермическим потенциалом или свободной энергией Гиббса (G, кДж)

Классическим определением энергии Гиббса является выражение

где -внутренняя энергия,-давление,-объём,- абсолютнаятемпература,-энтропия.

Дифференциалэнергии Гиббса для системы с постоянным числом частиц, выраженный в собственных переменных - черездавлениеp итемпературуT:

Для системы с переменным числом частиц этот дифференциал записывается так:

Здесь -химический потенциал, который можно определить как энергию, которую необходимо затратить, чтобы добавить в систему ещё одну частицу.

Понятие свободной энергии Гиббса было введено в химию с целью объяснения возможности самопроизвольного или спонтанного протекания той или иной реакции. Расчет этой энергии требует знания изменения энтропии процесса и количества энергии, которое поглощается или выделяется при его осуществлении.

Джозайя Уиллард Гиббс

Свободная энергия, которая определяет возможность протекания различных процессов, обозначается большой буквой G. Она получила название энергии Гиббса в честь американского физика-теоретика XIX века Джозайя Уилларда Гиббса, который внес важнейший вклад в развитие современной теории термодинамики.

Интересно отметить, что первый свой тезис, после защиты которого Гиббс получил звание доктора философии, он написал о форме зубцов шестерен. В этом исследовании он использовал геометрические методы для разработки идеальной формы этих зубцов. Термодинамикой ученый начал заниматься лишь в возрасте 32 лет, и в этой области физики добился огромных успехов.

Основные понятия термодинамики

Стандартной энергией Гиббса называется энергия при стандартных условиях, то есть при комнатной температуре (25 ºC) и атмосферном давлении (0,1 МПа).

Для понимания основных принципов термодинамики следует также ввести понятия энтропии и энтальпии системы.

Под энтальпией следует понимать внутреннюю энергию системы, которая находится при данном давлении и в данном объеме. Обозначается эта величина латинской буквой H и равна U+PV, где U - внутренняя энергия системы, P - давление, V - объем системы.

Энтропия системы является физической величиной, которая характеризует меру беспорядка. Иными словами, энтропия описывает особенность расположения частиц, составляющих данную систему, то есть характеризует вероятность существования каждого состояния этой системы. Обозначается она обычно латинской буквой S.

Таким образом, энтальпия является энергетической характеристикой, а энтропия - геометрической. Отметим, что для понимания и описания протекающих термодинамических процессов, абсолютные значения энтропии и энтальпии не несут полезной информации, важны лишь величины их изменений, то есть ΔH и ΔS.

Термодинамические утверждения

Этот закон помогает понять, в каком направлении может произвольно протекать реакция, или же она будет находиться в равновесии. Следующие утверждения являются фундаментальными для термодинамики:

  • Второй закон термодинамики гласит, чтобы процесс в любой системе происходил произвольно, его энтропия должна увеличиваться, то есть ΔS​>0.
  • При постоянных температуре и давлении изменение энергии Гиббса системы определяется по формуле ΔG=ΔH−TΔS.
  • Если для какого-либо процесса ΔG
  • Направление произвольного протекания конкретной реакции может зависеть от температуры в системе.

Самопроизвольные процессы

В химии произвольно протекающими процессами называются те, которые происходят без внешнего подвода к ним энергии. Произвольность протекания говорит о вероятности такой возможности и никак не связано с кинетикой процесса. Так, он может протекать быстро, то есть иметь взрывной характер, но может протекать и очень медленно в течение тысяч и миллионов лет.

Классическим примером самопроизвольно протекающей реакции является превращение углерода в форме алмаза в углерод аллотропной модификации графита. Такая реакция идет настолько медленно, что за время своей жизни человек не заметит каких-либо изменений в исходном алмазе, поэтому и говорят, что алмазы - вечны, хотя если выждать достаточный промежуток времени, то можно увидеть, как блестящий камень становится черным, похожим на сажу графитом.

Выделение и поглощение энергии

Еще одним важным аспектом произвольно протекающих процессов является выделение или поглощение теплоты, в первом случае говорят об экзотермическом процессе, во втором случае - об эндотермическом, то есть речь идет о знаке изменения энтальпии ΔH. Заметим, что как экзотермические, так и эндотермические процессы могут протекать произвольно.

Ярким примером произвольно протекающего процесса является воспламенение топливной смеси в цилиндре двигателя внутреннего сгорания. В этой реакции выделяется большое количество тепловой энергии, которая преобразуется с КПД порядка 30% в механическую энергию, заставляя вращаться коленчатый вал. Последний передает крутящий момент через трансмиссию колесам автомобиля, и машина движется.

Примером эндотермической реакции, которая протекает самостоятельно с поглощением тепла, является растворение обычной поваренной соли NaCl в воде. В этой реакции ΔH = +3.87 кДж/моль > 0. Проверить этот факт можно, измерив температуру воды до растворения в ней соли и после ее растворения. Полученная разница конечной температуры и начальной окажется отрицательной.

Энергия Гиббса процесса

Если какой-либо процесс протекает в системе с постоянным давлением и температурой, тогда второй закон термодинамики можно переписать в следующем виде: G=H−TS. Величина G - свободная энергия Гиббса имеет размерность кДж/моль. Определение спонтанности протекания конкретной реакции зависит от знака изменения этой величины, то есть ΔG. В итоге второй закон термодинамики примет форму: ΔG​=ΔH​−TΔS. Возможны следующие случаи:

  • ΔG>0 - эндергоническая реакция, которая не может произвольно происходить в прямом направлении, но будет самостоятельно идти в обратном направлении с увеличением количества реагентов;
  • ΔG=0 - система находится в равновесии, и концентрации реагентов м продуктов остаются постоянными сколь угодно длительное время.

Анализ полученного уравнения

Введенное выражение для второго закона термодинамики позволяет определить, в каком случае процесс может протекать произвольно. Для этого необходимо проанализировать три величины: изменение энтальпии ΔH, изменение энтропии ΔS и температура T. Заметим, что температура выражается в абсолютных единицах по международной системе мер и весов, то есть в Кельвинах, поэтому она является всегда положительной величиной.

Направление протекания реакции не зависит от температуры если:

  • Реакция является экзотермической (ΔH 0). В таком случае процесс произвольно идет всегда в прямом направлении;
  • Реакция эндотермического характера (ΔH>0) и изменение ее энтропии отрицательное (ΔS

Если же знаки изменения величин ΔH и ΔS совпадают, тогда уже температура играет важную роль в возможности протекания такого процесса. Так, экзотермическая реакция будет идти произвольно при низких температурах, а экзотермическая реакция - при высоких.

Расчет таяния льда

Хорошим примером реакции, в которой знак энергии Гиббса зависит от температуры, является таяние льда. Для такого процесса ΔH = 6,01 кДж/моль, то есть реакция эндотермическая, ΔS = 22,0 Дж/моль*К, то есть процесс происходит с увеличением энтропии.

Вычислим для таяния льда температуру, при которой изменение энергии Гиббса будет равно нулю, то есть система будет находиться в равновесном состоянии. Из второго закона термодинамики получаем: T = ΔH/ΔS, подставляя значения указанных величин, вычисляем T = 6,01/0,022 = 273,18 K.

Если перевести температуру из Кельвинов в привычные градусы Цельсия, получим 0 ºC. То есть при температуре выше этого значение ΔG 0, и произвольно уже будет идти обратный процесс, то есть кристаллизация жидкой воды.

В процессе химических реакций действуют две тенденции:

1.Н min (энтальпийный фактор);

2.S max (энтропийный фактор).

Оба эти фактора действуют во взаимно-противоположных направлениях и течение реакции определяется тем из них, который преобладает в данном конкретном случае. Изменение энтальпии и энтропии при химической реакции учитывает энергия Гиббса ∆G 0 (кДж): ∆G 0 = ∆Н 0 – Т∆S 0 , где Т – абсолютная температура, ∆S 0 . стандартное изменение энтропии; ∆Н 0 – стандартное изменение энтальпии.

Величина и знак G определяют возможность самопроизвольного протекания химической реакции и ее направление. При постоянной температуре и давлении реакция самопроизвольно протекает в том направлении, которому отвечает убыль энергии Гиббса.

G < 0 - реакция идет самопроизвольно в прямом направлении;

G > 0 - при данных условиях реакция в прямом направлении не идет;

G = 0 - реакция обратима (химическое равновесие).

Изменение ∆ r G не зависит от пути процесса и может быть рассчитано по следствию из закона Гесса: изменение энергии Гиббса в результате химической реакции равно сумме энергий Гиббса образования продуктов реакции за вычетом суммы энергий Гиббса образования исходных веществ.

R G 0 = Σ∆ f G 0 продуктов реакции – Σ∆ f G 0 исходных веществ,

где ∆ f G 0 – стандартная энергия Гиббса образования, кДж/моль; справочная величина. ∆ f G 0 простых веществ равна нулю.

Лекция № 6. СКОРОСТЬ ХИМИЧЕСКИХ РЕАКЦИЙ

Химическая кинетика - раздел химии, изучающий скорость и механизм химических реакций. Скоростью химической реакции называют изменение количества реагирующего вещества за единицу времени в единице объема (для гомогенной реакции) или на единице поверхности раздела фаз (для гетерогенной системы).Скорость реакции зависит от природы реагирующих веществ, их концентрации, температуры, присутствия катализаторов.

Зависимость скорости химической реакции от природы реагирующихвеществ обусловлена тем, что каждая реакция характеризуется определенным значением энергии активации. Реакции протекают в направлении разрушения менее прочных связей и образования веществ с более прочными связями. Для того чтобы разрушить одну связь и образовать другую связь, необходимы определенные энергетические затраты. Энергия активации Е а – это та избыточная энергия, которой должны обладать молекулы для того чтобы их столкновение могло привести к образованию нового вещества. Если энергия активации очень мала (< 40 кДж/моль), то реакция идет с очень большой скоростью, если энергия активации очень велика (>120 кДж/моль), то скорость реакции неизмеримо мала.



Зависимость скорости реакции от концентрации реагирующих веществ выражается законом действия масс (ЗДМ) : при постоянной температуре скорость химической реакции прямо пропорциональна произведению концентраций реагирующих веществ.

В общем случае для гомогенной реакции nA (г) + mB (г) = pAB (г)

зависимость скорости реакции от концентрации выражается уравнением:

где С А и С В – концентрации реагирующих веществ, k – константа скорости реакции. Для конкретной реакции 2NO (г) + O 2(г) = 2NO 2(г) математическое выражение ЗДМ имеет вид: υ = k∙∙

Константа скорости реакции k зависит от природы реагирующих веществ, температуры и катализатора, но не зависит от значения концентраций реагентов. Физический смысл константы скорости заключается в том, что она равна скорости реакции при единичных концентрациях реагирующих веществ.

Для гетерогенных реакций скорость реакции зависит только от концентрации газов или растворенных веществ, а концентрация твердой фазы в математическое выражение ЗДМ не входит. Например, скорость реакции горения углерода в кислороде пропорциональна только концентрации кислорода:

С (к) + О 2(г) = СО 2(к) , υ = k·

Зависимость скорости реакции от температуры. При повышении температуры увеличивается скорость движения молекул, что приводит в свою очередь к увеличению числа столкновений между ними.. Повышение температуры увеличивает число активных молекул, и, следовательно, увеличивает скорость химической реакции.

Зависимость скорости химической реакции от температуры выражается правилом Вант-Гоффа : при повышении температуры на каждые 10 °C скорость реакции возрастает в 2-4 раза .

где υ 2 и υ 1 – скорости реакций при температурах t 2 и t 1 ,

γ – температурный коэффициент скорости реакции, показывающий во сколько раз увеличивается скорость реакции при повышении температуры на 10 0 С

Более строго зависимость скорости реакции от температуры описывается уравнением Аррениуса , которое связывает константу скорости реакции с энергией активации:

где А – это постоянный множитель, который равен числу столкновений молекул в единицу времени, умноженному на вероятность химического взаимодействия при столкновении.

Зависимость скорости реакции от катализатора. Вещества, увеличивающие скорость реакции, а сами остающиеся после нее химически неизменными , называются катализаторами . Изменение скорости реакции под действием катализаторов называется катализом . Различают катализ гомогенный и гетерогенный .

Если реагирующие вещества и катализатор находится в одном и том же агрегатном состоянии, то катализ гомогенный :

2SO 2(г) + O 2(г) 2SO 3(г)

Если реагирующие вещества и катализатор находится в различных агрегатных состояниях, то катализ гетерогенный :

N 2(г) + 3H 2(г) 2NH 3(г)

Действие катализатора заключается в том, что он уменьшает энергию активации, и при этом увеличивается скорость реакции.

Лекция № 7. ХИМИЧЕСКОЕ РАВНОВЕСИЕ

Химические реакции делятся на необратимые и обратимые . Необратимые протекают только в прямом направлении (до полного израсходования одного из реагирующих веществ), обратимые протекают как в прямом, так и в обратном направлениях (при этом ни одно из реагирующих веществ не расходуется полностью). Рассмотрим следующую реакцию:

Математическое выражение закона действия масс для скорости прямой υ пр и обратной υ обр реакций имеет вид:

υ пр = υ обр =

В момент смешивания веществ А и В скорость прямой реакции будет максимальной. Затем вещества А и В постепенно расходуются и скорость прямой реакции уменьшается. Получившиеся вещества D и F начнут реагировать друг с другом, и скорость обратной реакции будет непрерывно возрастать по мере увеличения концентрации веществ D и F. В определенный момент времени скорость прямой реакции станет равна скорости обратной реакции.

Состояние системы, при котором скорость прямой реакции (υ 1) равна скорости обратной реакции (υ 2) , называетсяхимическим равновесием. Концентрации реагирующих веществ, которые устанавливаются при химическом равновесии, называются равновесными .

Закон действия масс для обратимых процессов : в состоянии химического равновесия при неизменной температуре отношение произведения концентраций продуктов реакции к произведению концентраций исходных веществ есть величина постоянная . Эта величина называется константой равновесия . Равновесные концентрации принято обозначать не символом «С А », а формулой вещества, помещенной в квадратные скобки, например, , а константу равновесия, выражаемую через концентрации – К С. Для обратимой реакции aA+bB dD + fF математическое выражение закона действия масс имеет вид:

Для конкретной гомогенной реакции:

2СО (г) + О 2(г) ↔ 2СО 2(г)

Для гетерогенной реакции СО 2(г) + С (к) = 2СО (г) . Концентрация твердой фазы в математическое выражение ЗДМ для гетерогенных систем не входит.

Химическое равновесие неизменно до тех пор, пока условия равновесия (концентрация, температура, давление ), сохраняются постоянными. При изменении условий равновесие нарушается. Через некоторое время в системе вновь наступает равновесие, характеризующееся новым равенством скоростей и новыми равновесными концентрациями всех веществ. Переход системы из одного равновесного состояния в другое называется смещением равновесия .

Направление смещения равновесия определяется принципом Ле Шателье : если на систему, находящуюся в равновесии, оказывается внешнее воздействие (изменяется концентрация, давление, температура), то равновесие смещается в сторону той реакции, которое ослабляет произведенное воздействие.

Энергией Гиббса реакции называется изменение энергии Гиббса ΔG при протекании хими-ческой реакции. Так как энергия Гиббса системы G = Н - TS, её изменение в процессе определяется по формуле: ΔG = ΔH-TΔS (4.1)

где Т - абсолютная температура в Кельвинах.

Энергия Гиббса химической реакции характеризует возможность её самопроизвольного проте-канияпри постоянных давлении и температуре. Если ΔG<0, то реакция может протекать самопроиз-вольно, при ΔG>0 самопроизвольное протекание реакции невозможно, если же ΔG = 0, система на-ходится в состоянии равновесия.

Для расчёта энергии Гиббса реакции по формуле (4.1) отдельно определяются ΔН и ΔS. При этом в практических расчётах пользуются приближениями (2.4) и (3.4).

Пример 4.1. Расчёт энергии Гиббса реакции, выраженной уравнением 4NH 3 (г) + 5O 2 (г) = 4NO(г) + + 6Н 2 O(г), при давлении 202.6 кПа и температуре 500°С (773К).

Согласно условию, реакция протекает при практически реальных значениях давления и темпе-ратуры. при которых допустимы приближения (2.4) и (3.4), т.е.

Δ Н 773 ≈ Δ Н 0 298 = - 904.8 кДж = - 904800 Дж. (см. пример 2.2),

а Δ S 773 ≈ Δ S 0 298 = 179,77 Дж/К. (см. пример 3.1).

После подстановки значений Δ H 0 298 и Δ S° 298 в формулу (4.1) получаем:

Δ G 773 = Δ H 773 -773 Δ S 773 ≈ Δ Н 0 298 -773 Δ S 0 298 = - 904800 - 773*179, 1043762 Дж = - 1043,762 кДж.

Полученное отрицательное значение энергии Гиббса реакции Δ G 773 указывает на то, что дан ная реакция в рассматриваемых условиях может протекать самопроизвольно.

Если реакция протекает в стандартных условиях при температуре 298К, расчёт её энергии Гиббса (стандартной энергии Гиббса реакции) можно производить аналогично расчёту стандартной теплоты реакции по фрмуле, котораядля реакции, выраженной уравнением аА + ЬВ = сС + dD, имеет вид:

ΔG ° 298 = (cΔG ° 298,o6p,C + dΔG ° 298,o6p,D) - (aΔG 298,обрА + bΔG° 298,обр,в) (4.2)

где Δ G ° 298, o6p. - стандартная энергия Гиббса образования соединения в кДж/моль (табличные значе-ния) - энергия Гиббса реакции, в которой при температуре 298К образуется 1 моль данного соеди-нения, находящегося в стандартном состоянии, из простых веществ, также находящихся в стан-дартных состояниях 4 *, a Δ G° 298 - стандартная энергия Гиббса реакции в кДж.

Пример 4.2. Расчёт стандартной энергии Гиббса реакции, протекающей по уравнению: 4NH 3 (г) + 5O 2 (г) = 4NO(г) + + 6Н 2 O(г).


В соответствии с формулой (4.2) записываем:

Согласно определению, стандартная энергия Гиббса образования простых веществ равна нулю.

ΔG 0 298 O 2 в выражении не фигурирует ввиду ее равенства нулю

ΔG 0 298 = (4 ΔG 0 298 . no + 6 ΔG 0 298. H 2 O) - 4 ΔG 0 298. NH з После подстановки табличных значений ΔG 0 298 .обР получаем: ΔG 0 298 = (4 (86,69) + 6 (-228, 76)) - 4 (-16,64) = - 959.24 кДж. По полученному результату видно, что так же, как и в примере 4.1, в стандартных условиях рассматриваемая реакция может протекать самопроизвольно

По формуле (4.1) можно определить температурный диапазон самопроизвольного протека-ния реакции. Так как условием самопроизвольного протекания реакции является отрицательность ΔG (ΔG<0), определение области температур, в которой реакция может протекать самопроизвольно, сво-дится к решению неравенства (ΔH-TΔS)

Пример 4.3. Определение температурной области самопроизвольного протекания реакции, вы-раженной уравнением: СаСО 3 (т) = СаО(т) + СO 2 (г).

Находим ΔH u ΔS. ΔH ≈ ΔH° 298 = (ΔН 0 298 , СаО + ΔН° 298, CO 2) - ΔН° 298 , CaCO 3 = (-635,1 + (-393,51)) - (-1206) = 177,39кДж = 177390 Дж; ΔS ≈ ΔS 0 298 = (S 0 298 , СаО + S 0 298.С02) - S 0 298 ,СаСОз = (39,7 + 213,6)- 92,9 = 160,4 Дж/К. Подставляем значения ΔН и ΔS в неравенство и решаем его относительно Т: 177390 - Т*160,4<0, или 177390<Т*160,4, или Т>1106. Т.е. при всех температурах, больших 1106К, бу-дет обеспечиваться отрицательность ΔG и, следовательно, в данном температурном диапазоне бу-дет возможным самопроизвольное протекание рассматриваемой реакции.