Энергия иона. Что такое энергия ионизации и от чего зависит

Наиболее характерным химическим свойством металлов является способность их атомов легко отдавать внешние электроны и превращаться в положительно заряженные ионы, а неметаллы, наоборот, характеризуются способностью присоединять электроны с образованием отрицательных ионов. Для отрыва электрона от атома с превращением последнего в положительный ион нужно затратить некоторую энергию, называемую энергией ионизации.

Энергию ионизации можно определить путем бомбардировки атомов электронами, ускоренными в электрическом поле. То наименьшее напряжение поля, при котором скорость электронов становится достаточной для ионизации атомов, называется потенциалом ионизации атомов данного элемента и выражается в вольтах.

Энергию электрона часто выражают в электронволътах (эВ). 1 эВ - энергия, которую приобретает электрон в ускоряющем электрическом поле с разностью потенциалов IB (1 эВ = 1,6 10“ 19 Дж; в расчете на 1 моль это соответствует энергии 96,5 кДж/моль).

Энергия ионизации, выраженная в элсктронвольтах, численно равна потенциалу ионизации, выраженному в вольтах.

При затрате достаточной энергии можно оторвать от атома два, три и более электронов. Поэтому говорят о первом потенциале ионизации (энергия отрыва от атома первого электрона), втором потенциале ионизации (энергия отрыва второго электрона) и т.д. По мере последовательного удаления электронов от атома положительный заряд образующегося иона возрастает. Поэтому для отрыва каждого следующего электрона требуется большая затрата энергии, иначе говоря, последовательные потенциалы ионизации атома возрастают (табл. 3).

Данные табл. 3 показывают, что от атома лития сравнительно легко отрывается один электрон, от атома бериллия - два, от атома бо-

Последовательные потенциалы ионизации атомов некоторых элементов второго периода

Таблица 3

Элемент

Потенциал ионизации, В

первый

второй

третий

четвертый

пятый

Литий

Бериллий

Углерод

ра - три, от атома углерода - четыре. Отрыв же последующих электронов требует гораздо большей затраты энергии. Это соответствует нашим представлениям о строении рассматриваемых атомов. Действительно, у атома лития во внешнем электронном слое размещается один электрон, у атома бериллия - 2, бора - 3, углерода - 4. Эти электроны обладают более высокой энергией, чем электроны предшествующего слоя, и поэтому их отрыв от атома требует сравнительно небольших энергетических затрат. При переходе же к следующему электронному слою энергия ионизации резко возрастает.

Величина потенциала ионизации может служить мерой большей или меньшей «металличности» элемента: чем меньше потенциал ионизации, чем легче оторвать электрон от атома, тем сильнее должны быть выражены металлические свойства элемента.

Рассмотрим с этой точки зрения, как изменяются первые потенциалы ионизации с увеличением атомного номера у атомов одной и той же подгруппы периодической системы (табл. 4). Как видно, с увеличением порядкового номера элемента потенциалы ионизации уменьшаются, что свидетельствует об усилении металлических и соответственно ослаблении неметаллических свойств.

Таблица 4

Первые потенциалы ионизации (в В) атомов элементов некоторых главных подгрупп

I группа

II группа

III группа

IV группа

Эта закономерность связана с возрастанием радиусов атомов, о котором говорилось в § 33. Кроме того, увеличение числа промежуточных электронных слоев, расположенных между ядром атома и внешними электронами, приводит к более сильному экранированию ядра, т.е. к уменьшению его эффективного заряда. Оба эти фактора (растущее удаление внешних электронов от ядра и уменьшение его эффективного заряда) приводят к ослаблению связи внешних электронов с ядром и, следовательно, к уменьшению потенциала ионизации.

У элементов одного и того же периода при переходе от щелочного металла к благородному газу заряд ядра постепенно возрастает, а радиус атома уменьшается. Поэтому потенциал ионизации постепенно увеличивается, а металлические свойства ослабевают. Иллюстрацией

Первые потенциалы ионизации (в В) атомов элементов второго и третьего периодов

Таблица 5

этой закономерности могут служить первые потенциалы ионизации элементов второго и третьего периодов (табл. 5).

Из данных табл. 5 видно, что общая тенденция к возрастанию энергии ионизации в пределах периода в некоторых случаях нарушается. Так, потенциалы ионизации атомов бериллия и азота выше, чем атомов следующих за ними элементов бора и кислорода; аналогичное явление наблюдается и в третьем периоде при переходе от магния к алюминию и от фосфора к сере. При этом повышенные значения потенциалов ионизации наблюдаются либо у атомов с целиком заполненным внешним энергетическим подуровнем (бериллий и магний)

либо у атомов, у которых внешний энергетический подуровень заполнен ровно наполовину, так что каждая орбиталь этого подуровня занята одним электроном (азот и фосфор)

Эти и подобные факты служат экспериментальным основанием уже упоминавшегося в § 32 положения, согласно которому электронные конфигурации, соответствующие полностью или ровно наполовину занятым подуровням, обладают повышенной энергетической устойчивостью.

Как отмечалось выше, атомы могут не только отдавать, но и присоединять электроны. Энергия, выделяющаяся при присоединении электрона к свободному атому, называется сродством атома к электрону. Сродство к электрону, как и энергия ионизации, обычно выражается в электронвольтах. Так, сродство к электрону атома водорода равно 0,75 эВ, кислорода - 1,47 эВ, фтора - 3,52 эВ.

Сродство к электрону атомов металлов, как правило, близко к нулю или отрицательно; из этого следует, что для атомов большинства металлов присоединение электронов энергетически невыгодно. Сродство же к электрону атомов неметаллов всегда положительно и тем больше, чем ближе к благородному газу расположен неметалл в периодической системе; это свидетельствует об усилении неметаллических свойств по мере приближения к концу периода.

Важным энергетическим параметром для изучения химических процессов является энергия ионизации атома. Применительно к атому водорода это энергия, которую необходимо затратить, для того чтобы оторвать электрон от протона.

Она равна сумме потенциальной энергии системы и кинетической энергии электрона.

E a = E+T= -Z . e/2 . R, (2.7)

где E a -энергия атома водорода.

Из формулы (2.7) следует, что уменьшение расстояния между электроном и ядром и увеличение заряда ядра означают увеличение силы притяжения электрона к ядру. То есть, потребуется больше энергии для отрыва электрона от ядра. Чем больше энергии требуется для разрыва этой связи, тем более стабильна система.

Следовательно, если разрушение связи (отделение электрона от ядра) в одной системе требует больше энергии, чем в другой, то первая система более стабильна.

Энергия ионизации атома - та энергия, что требуется для разрыва связей в атоме водорода, была определена экспериментально . Она равна 13,6 эВ (электронвольт). Также экспериментально была определена энергия, необходимая для отрыва электрона от ядра в атоме, состоящем из одного электрона и ядра, заряд которого в два раза больше, заряда ядра атома водорода. В этом случае необходимо затратить в четыре раза больше энергии (54,4 эВ).

Как известно из электростатики, энергия (Т ), необходимая для разрыва связи между противоположенными зарядами (Z и е ), находящимися друг от друга на расстоянии R , определяется равенством

Она пропорциональна величине зарядов и обратно пропорциональна расстоянию между ними. Такая корреляция вполне понятна: чем больше заряды, тем сильнее их притяжение друг к другу, следовательно, больше энергии требуется для разрыва связи между ними. И чем меньше расстояние между ними, тем больше энергии придется затратить на разрушение связи. Благодаря этому становится понятным, почему атомная система, где заряд ядра в два раза больше, чем заряд ядра в атоме водорода, более стабильна и требует больше энергии для отрыва электрона.

СРОДСТВО К ЭЛЕКТРОНУ частицы (молекулы, атома, иона), миним. энергия А, необходимая для удаления электрона из соответствующего отрицат. иона на бесконечность. Для частицы X С. к э. относится к процессу:

С. к э. равно энергии ионизации E отрицат. иона X - (первому потенциалу ионизации U 1 , измеряется в эВ). По аналогии с потенциалом ионизации различают первое и второе С. к э., а также вертикальное и адиабатическое С. к э. многоатомной частицы. Термрдинамич. определение С. к э.-стандартная энтальпия р-ции (1) при абс. нуле температуры:

АN А (N А ~постоянная Авогадро).

Надежных эксперим. данных по С. к э. атомов и молекул до сер. 60-х гг. 20 в. практически не существовало. В настоящее время использование равновесных методов получения и исследования отрицат. ионов позволило получить первые С. к э. для большинства элементов периодич. системы и неск. сотен орг. и неорг. молекул. Наиб. перспективные методы определения С. к э.-фотоэлектронная спектроскопия (точность + 0,01 эВ) и масс-спектрометрич. исследование равновесий ионно-молекулярных реакций. Квантовомех. расчеты С. к э. аналогичны расчетам потенциалов ионизации. Наилучшая точность для многоатомных молекул составляет 0,05-0,1 эВ.


Наибольшим С. к э. обладают атомы галогенов. Для ряда элементов С. к э. близко к нулю или меньше нуля. Последнее означает, что для данного элемента устойчивого отрицат. иона не существует. В табл. 1 приведены значения С. к э. атомов, полученные методом фотоэлектронной спектроскопии (работы У. Лайнебергера с сотрудниками).

ЭЛЕКТРООТРИЦАТЕЛЬНОСТЬ , величина, характеризующая способность атома к поляризации ковалентных связей. Если в двухатомной молекуле А - В образующие связь электроны притягиваются к атому В сильнее, чем к атому А, то атом В считается более электроотрицательным, чем А.
Л. Полинг предложил (1932) для количеств. характеристики электроотрицательности использовать термохим. данные об энергии связей А-А, В - В и А - В - соотв. Е АА, Е вв и Е АВ. Энергия гипотетической чисто ковалентной связи А - В (Е ков) принимается равной среднеарифметич. или среднегеометрич. значению величин E AA и Е ВВ. Если электроотрицательности атомов А и В различны, то связь А - В перестает быть чисто ковалентной и энергия связи Е АВ станет больше Е ков на величину

Чем больше различие электроотрицательностей атомов А и В, тем больше величина Используя эмпирич. ф-лу (множитель 0,208 возникает при переводе значений энергии из ккал/моль в эВ) и принимая для атома водорода произвольное значение электроотрицательности равное 2,1, Полинг получил удобную шкалу относит. числовых значений электроотрицательности, часть к-рых приведена в табл. Наиб. электроотрицателен самый легкий из галогенов - F, наименее - тяжелые щелочные металлы.
Для количеств. описания электроотрицательности, помимо термохим. данных, используют также данные о геометрии молекул (напр., метод Сандерсона), спектральные характеристики (напр., метод Горди).

АТОМНЫЕ РАДИУСЫ , эффективные характеристики атомов, позволяющие приближенно оценивать межатомное (межъядерное) расстояние в молекулах и кристаллах. Согласно представлениям квантовой механики, атомы не имеют четких границ, однако вероятность найти электрон, связанный с данным ядром, на определенном расстоянии от этого ядра быстро убывает с увеличением расстояния. Поэтому атому приписывают нек-рый радиус, полагая, что в сфере этого радиуса заключена подавляющая часть электронной плотности (90-98%). Атомные радиусы - величины очень малые, порядка 0,1 нм, однако даже небольшие различия в их размерах могут сказываться на структуре построенных из них кристаллов, равновесной конфигурации молекул и т.п. Опытные данные показывают, что во мн. случаях кратчайшее расстояние между двумя атомами действительно примерно равно сумме соответствующих атомных радиусов (т. наз. принцип аддитивности атомных радиусов). В зависимости от типа связи между атомами различают металлич., ионные, ковалентные и ван-дер-ваальсовы атомные радиусы.

Металлич. радиус равен половине кратчайшего расстояния между атомами в кристаллич. структуре металла. Его значение зависит от координац. числа К (числа ближайших соседей атома в структуре). Чаще всего встречаются структуры металлов с К = 12. Если принять значение атомных радиусов в таких кристаллах за 1, то атомные радиусы металлов с К, равными 8, 6 и 4, составят соотв. 0,98, 0,96 и 0,88. Близость значений атомных радиусов разл. металлов - необходимое (хотя и недостаточное) условие того, что эти металлы образуют твердые р-ры замещения. Так, жидкие К и Li (радиусы 0,236 и 0,155 нм соотв.) обычно не смешиваются, а К с Rb и Cs образуют непрерывный ряд твердых р-ров (радиусы Rb и Cs-соотв. 0,248 и 0,268 нм). Аддитивность металлич. атомных радиусов позволяет с умеренной точностью предсказывать параметры кристаллич. решеток интерметаллич. соединений.

Ионные радиусы используют для приближенных оценок кратчайших межъядерных расстояний в ионных кристаллах, предполагая, что эти расстояния равны сумме соответствующих ионных радиусов атомов. Существует неск. систем значений ионных радиусов, отличающихся для индивидуальных ионов, но приводящих к примерно одинаковым межъядерным расстояниям в ионных кристаллах. Впервые ионные радиусы были определены в 20-х гг. 20 в. В. М. Гольдшмидтом, опиравшимся на рефрактометрич. значения радиусов F - и О 2- , равных соотв. 0,133 и 0,132 нм. В системе Л. Полинга за основу принято значение радиуса иона О 2- , равное 0,140 нм, в распространенной системе Н. В. Белова и Г. Б. Бокия радиус этого же иона принят равным 0,136 нм, в системе К. Шеннона -0,121 нм (К = 2).

Ковалентный радиус равен половине длины одинарной хим. связи X-X, где Х - атом неметалла. Для галогенов ковалентный атомный радиус - это половина межъядерного расстояния в молекуле Х 2 , для S и Se- в Х 8 , для С-в кристалле алмаза. Ковалентные радиусы F, Cl, Br, I, S, Se и С равны соотв. 0,064, 0,099, 0,114, 0,133, 0,104, 0,117 и 0,077 нм. Ковалентный радиус водорода принимают равным 0,030 нм, хотя половина длины связи Н-Н в молекуле Н 2 равна 0,037 нм. Пользуясь правилом аддитивности атомных радиусов, предсказывают длины связей в многоатомных молекулах. Напр., длины связей С-Н, С-F и С-С1 должны составлять 0,107, 0,141 и 0,176 нм соотв., и они действительно примерно равны указанным значениям во мн. орг. молекулах, не содержащих кратных углерод-углеродных связей; в противном случае соответствующие межъядерные расстояния уменьшаются.

Ван-дер-ваальсовы радиусы определяют эффективные размеры атомов благородных газов. Считают также, что эти радиусы равны половине межъядерного расстояния между ближайшими одинаковыми атомами, не связанными между собой хим. связью, т.е. принадлежащими разным молекулам, напр. в молекулярных кристаллах. Значения ван-дер-ваальсовых радиусов находят, пользуясь принципом аддитивности атомных радиусов, из кратчайших контактов соседних молекул в кристаллах. В среднем они на ~ 0,08 нм больше ковалентных радиусов. Знание ван-дер-ваальсовых радиусов позволяет определять конформацию молекул и их упаковку в молекулярных кристаллах. Энергетически выгодными обычно бывают такие конформации молекул, в к-рых перекрывание ван-дер-ваалъсовых радиусов валентно не связанных атомов невелико. Ван-дер-ваальсовы сферы валентно связанных атомов в пределах одной молекулы перекрываются. Внеш. контур перекрывающихся сфер определяет форму молекулы. Молекулярные кристаллы подчиняются принципу плотной упаковки, согласно к-рому молекулы, моделируемые своим "ван-дер-ваальсовым окаймлением", располагаются т. обр., что "выступы" одной молекулы входят во "впадины" другой. Пользуясь этими представлениями, можно интерпретировать кристаллографич. данные, а в ряде случаев и предсказывать структуру молекулярных кристаллов.

Билет 6.

Химическая связь.

Образование из атомов молекул, молекулярных ионов, ионов, кристаллических, аморфных и других веществ сопровождается уменьшением энергии по сравнению с невзаимодействующими атомами. При этом минимальной энергии соответствует определенное расположение атомов друг относительно друга, которому отвечает существенное перераспределение электронной плотности. Силы, удерживающие атомы в новых образованиях, получили обобщенное название ╚химическая связь╩. Важнейшие виды химической связи: ионная, ковалентная, металлическая, водородная, межмолекулярная.

Согласно электронной теории валентности, химическая связь возникает за счет перераспределения электронов валентных орбиталей, в результате чего возникает устойчивая электронная конфигурация благородного газа (октет) за счет образования ионов (В. Коссель) или образования общих электронных пар (Г. Льюис).

Химическая связь характеризуется энергией и длиной. Мерой прочности связи служит энергия, затрачиваемая на разрушение связи, или выигрыш в энергии при образовании соединения из отдельных атомов (E св). Так, на разрыв связи H√H затрачивается 435 кДжмоль √1 , а на атомизацию метана CH 4 √ 1648 кДжмоль √1 , в этом случае E C√H = 1648: 4 = 412 кДж. Длина связи (нм) √ расстояние между ядрами в том или ином соединении. Обычно длина связи и ее энергия антибатны: чем больше длина связи, тем меньше ее энергия.

Химическая связь обычно изображается черточками, соединяющими взаимодействующие атомы; каждая черта эквивалентна обобщенной паре электронов. В соединениях, содержащих более двух атомов, важной характеристикой является валентный угол, образуемый химическими связями в молекуле и отражающий ее геометрию.

Полярность молекулы определяется разностью электроотрицательностей атомов, образующих двухцентровую связь, геометрией молекулы, а так же наличием неподеленных электронных пар, так как часть электронной плотности в молекуле может быть локализована не в направлении связей. Полярность связи выражается через ее ионную составляющую, то есть через смещение электронной пары к более электроотрицательному атому. Полярность связи может быть выражена через ее дипольный момент м, равный произведению элементарного заряда на длину диполя *) м = e l. Полярность молекулы выражается через ее дипольный момент, который равен векторной сумме всех дипольных моментов связей молекулы.

*) Диполь √ система из двух равных, но противоположных по знаку зарядов, находящихся на единичном расстоянии друг от друга. Дипольный момент измеряется в кулон-метрах (Клм) или в дебаях (D); 1D = 0,33310 √29 Клм.

Все эти факторы следует учитывать. Например, для линейной молекулы CO 2 м = 0, но для SO 2 м = 1,79 D вследствие ее углового строения. Дипольные моменты NF 3 и NH 3 при одинаковой гибридизации атома азота (sp 3), примерно одинаковой полярности связей N√F и N√H (ОЭО N = 3; ОЭО F = 4; ОЭО H = 2,1) и сходной геометрии молекул существенно различаются, поскольку дипольный момент неподеленной пары электронов азота при векторном сложении в случае NH 3 увеличивает м молекулы, а в случае NF 3 уменьшает его.

В химических реакциях поведение атомов и ионов в значительной мере зависит от того, насколько прочно у них электроны удерживаются на своих уровнях. Электроны связаны с ядром энергией, величина которой зависит от того, на каком уровне расположены электроны. Чем выше уровень, на котором находится электрон, тем меньше энергия связи.

Чтобы оторвать электрон от ядра, нужно затратить энергию, превышающую энергию связи. Мерой энергии электронов в различных атомах может служить энергия ионизации (потенциал ионизации), т. е. то количество энергии, которое необходимо затратить, чтобы оторвать электрон от атома и удалить его из сферы влияния положительно заряженного ядра. Величины потенциалов ионизации определены различными методами и приведены в приложении 5.

Потенциалы ионизации выражают в электронвольтах (эв) или в . Различают потенциалы ионизации первого электрона (т.е. количество энергии, необходимое для отрыва от атома первого электрона), второго электрона (т. е. количество энергии, необходимое для отрыва электрона от одновалентного положительного иона), третьего электрона и т. д.

Потенциал ионизации зависит в основном от величины заряда ядра и радиуса атома. Чем больше радиус атома, тем слабее притягивается электрон к ядру, а следовательно, и меньше энергии необходимо затратить на отрыв электрона и превращение атома в положительный ион. Потенциалы ионизации для элементов второго периода приведены в табл. 11.

Из таблицы видно, что наиболее трудно первый электрон отрывается от атома инертного элемента, имеющего стабильные, законченные энергетические уровни. Второй электрон труднее всего оторвать от атомов элементов I группы, третий - от атомов элементов II группы, так как в этих случаях отрываемый электрон принадлежит к законченному энергетическому уровню. Наоборот, очень легко отрывается первый электрон от атомов щелочных металлов, у которых он является единственным валентным электроном, дающим начало новому электронному слою.

Таблица 11. Потенциалы ионизации и радиусы атомов элементов второго периода

Если у атомов легче всего отрывается первый электрон, то для каждого следующего электрона энергия ионизации растет, так как свободный заряд иона, притягивающего электроны, при этом увеличивается. Поэтому всегда и т. д.

В периодах, как правило, ионизационный потенциал увеличивается слева направо, при этом восстановительные свойства элементов (атомов) уменьшаются, а окислительные возрастают.

В пределах одной и той же главной подгруппы (как правило) электрон связан тем слабее, чем больше порядковый номер элемента. Это видно из энергий ионизации щелочных металлов (табл. 12).

Таблица 12. Потенциалы ионизации щелочных металлов

Величина энергии ионизации зависит не только от заряда ядра и радиуса атома, но и от воздействия, вызванного волновыми свойствами электронов. Так, энергий ионизации элементов в побочных подгруппах периодической системы меняется незакономерно и с ростом заряда она обычно не уменьшается, как в главных подгруппах, а растет.

Различное изменение потенциалов ионизации главных и побочных подгрупп можно объяснить следующим образом.

У атомов элементов главных подгрупп по мере увеличения порядкового номера увеличивается радиус атома, т. е. расстояние отрываемых электронов от ядра, а следовательно, ослабляется связь этих электронов с ядром и поэтому уменьшаются потенциалы ионизации.

Кроме того, у s- и р-элементов на предпоследнем уровне находится 8 или 18 электронов, которые сильно экранируют заряд ядра. В этом случае величины потенциалов ионизации обусловливаются состоянием внешних электронов.

У атомов побочных подгрупп (d-элементов) наблюдается более сложная зависимость, вследствие того, что у них на последнем уровне находится, как правило, 2 (реже 1) электрона, а соседний с наружным уровень (так называемый d-подуровень) является незавершенным, что сказывается (хотя и непоследовательно) на увеличении потенциалов ионизации сверху вниз, так как d-электроны слабее экранируют заряд ядра.

В побочных подгруппах при переходе от одного элемента к другому (в порядке увеличения заряда ядра) потенциалы ионизации относительно мало изменяются, так как радиусы их атомов сравнительно медленно уменьшаются.

Наряду с энергией ионизации характерным свойством атома является сродство к эмктрону - величина энергии, выделяемая (или поглощаемая) при соединении атома с электроном, т. е. энергия реакции:

где Е - атом, e - электрон; - отрицательный ион.

При присоединении двух и более злектронов к атому энергия отталкивания больше, чем энергия притяжения. Поэтому сродство атома к двум и более электронам всегда отрицательно.

Сродство к электрону выражают обычно в электронвольтах или .

В табл. 13 приведены величины сродства некоторых атомов и молекул к электрону.

Таблица 13. Сродство атомов и молекул к электрону

Из приведенных данных видно, что атомы галогенов, в особенности фтор и хлор, имеют большое сродство к электрону, т. е. они весьма энергично притягивают недостающие (до октета) электроны.

Наиболее легко присоединяют электроны те атомы, которые имеют на внешнем слое 7, 6, 5 или 4 электрона и достраивают орбиту до восымиэлектронной, т. е. приобретают конфигурацию инертных элементов.

Наиболее легко отдают электроны те атомы, у которых на внешнем уровне имеется 1, 2, 3 электрона, и после этого остается также восьмиэлектронная оболочка.

Не следует, однако, считать, что атом тем легче присоединяет электроны, чем прочнее удерживает свои собственные электроны, т. е. что сродство к электрону тем больше, чем больше потенциал ионизации . Такой зависимости нет, так как на соотношение величин сродства к электрону и потенциалов ионизации сильно влияет структура электронной оболочки атома. Это можно наблюдать у атомов инертных элементов, потенциал ионизации которых очень велик, так как их энергетические уровни очень устойчивы, однако по той же причине их сродство к электрону очень мало.

Сродство к электрону определяется положением элемента в периодической системе.

В периодах слева направо величины сродства к электрону возрастают, в подгруппах сверху вниз они, как правило, уменьшаются.

Таким образом, потенциал ионизации может служить мерой восстановительной активности элементов; чем меньше потенциал ионизации атома, тем более сильным восстановителем он является, и, наоборот, чем больше потенциал ионизации, тем слабее восстановительная активность атома.

Сродство к электрону служит мерой окислительной способности атома: чем больше сродство атома к электрону, тем более сильным окислителем он является, так как наиболее легко присоединяет электрон.

Атомы металлов не принимают электроны; напротив, атомы неметаллов способны присоединить электроны. Причем, сродство к электрону у них тем больше, чем ближе к инертному элементу неметалл в периодической системе, т. е. в пределах периода неметаллические свойства усиливаются слева направо.

В реакциях окисления - восстановления отдача каким-либо атомом электрона, т. е. реакция окисления, обязательно должна сопровождаться присоединением электрона к какому-либо другому атому, т. е. реакцией восстановления. Иначе говоря, реакция окисления - восстановления протекает только в том случае, когда суммарный энергетический эффект является положительным, т. е. если в результате перехода электрона от одного атома к другому получится выигрыш энергии.

Разумеется, положительно заряженные ионы обладают сродством к электрону. При присоединении электрона к положительно заряженному иону выделяется энергия в количестве, равном потенциалу ионизации с обратным знаком. Отрицательно заряженные ионы, теряя электроны, приобретают энергию, равную по величине сродству к электрону.

Отсюда можно сделать следующий вывод: реакция может произойти лишь в том случае, если сродство к электрону окислителя больше, чем потенциал ионизации восстановителя.

Для оценки способности элементов к присоединению и отдаче электронов в химии введено понятие электроотрицательности элемента (X), под которой понимают сумму потенциала ионизации атома и его сродства к электрону , т. е. .

Ниже приведены величины электроотрицательностей некоторых элементов, причем электроотрицательность лития принята равной единице:

Из приведенных данных видно, что относительная электроотрицательность в периоде растет с увеличением номера элемента, в группе, наоборот, - уменьшается.

Чем больше величина электроотрицательности элемента, тем сильнее его окислительные (неметаллические) свойства, и, наоборот, элемент, имеющий наименьшее значение электроотрицательности, наиболее активно проявляет восстановительные свойства.

Пользуясь значениями электроотрицательности элементов, легко определить направление перехода электронов в реакциях, например

В первой реакции электроотрицательность водорода 2,1, а фтора 4. Разница между этими величинами относительно велика (4 - 2,1= 1,9). Следовательно, при взаимодействии водорода с фтором переход электронов будет направлен от водорода к фтору, т. е. водород окисляется, а фтор восстанавливается.

Во второй реакции электроотрицательность натрия 0,9, а водорода 2,1; поэтому в данном случае водород выступает уже в роли окислителя, т. е. принимает электроны, а натрий, проявляя восстановительные свойства, - отдает их.

В третьей реакции электроны перемещаются от алюминия к сере, так как электроотрицательность алюминия меньше, чем серы.

Важным энергетическим параметром для изучения химических процессов является энергия ионизации атома. Применительно к атому водорода это энергия, которую необходимо затратить, для того чтобы оторвать электрон от протона.

Она равна сумме потенциальной энергии системы и кинетической энергии электрона.

E a = E+T= -Z . e/2 . R, (2.7)

где E a -энергия атома водорода.

Из формулы (2.7) следует, что уменьшение расстояния между электроном и ядром и увеличение заряда ядра означают увеличение силы притяжения электрона к ядру. То есть, потребуется больше энергии для отрыва электрона от ядра. Чем больше энергии требуется для разрыва этой связи, тем более стабильна система.

Следовательно, если разрушение связи (отделение электрона от ядра) в одной системе требует больше энергии, чем в другой, то первая система более стабильна.

Энергия ионизации атома - та энергия, что требуется для разрыва связей в атоме водорода, была определена экспериментально . Она равна 13,6 эВ (электронвольт). Также экспериментально была определена энергия, необходимая для отрыва электрона от ядра в атоме, состоящем из одного электрона и ядра, заряд которого в два раза больше, заряда ядра атома водорода. В этом случае необходимо затратить в четыре раза больше энергии (54,4 эВ).

Как известно из электростатики, энергия (Т ), необходимая для разрыва связи между противоположенными зарядами (Z и е ), находящимися друг от друга на расстоянии R , определяется равенством

Она пропорциональна величине зарядов и обратно пропорциональна расстоянию между ними. Такая корреляция вполне понятна: чем больше заряды, тем сильнее их притяжение друг к другу, следовательно, больше энергии требуется для разрыва связи между ними. И чем меньше расстояние между ними, тем больше энергии придется затратить на разрушение связи. Благодаря этому становится понятным, почему атомная система, где заряд ядра в два раза больше, чем заряд ядра в атоме водорода, более стабильна и требует больше энергии для отрыва электрона.

Однако, следующий вопрос требует дополнительного разъяснения:

Это особенно необъяснимо, если мы вернемся к равенству (2.1), в соответствие с которым увеличение заряда в два раза приводит к увеличению требуемой для разрыва энергии тоже в два раза, а не к возведению в квадрат.

Эта несоответствие объясняется следующим образом: в системе, где заряды Z и е находятся в состоянии покоя относительно друг друга, энергия Т действительно пропорциональна Z . Соответственно, при увеличении заряда ядра энергия Т увеличивается прямо пропорционально. Но в отличие от такой системы, в атоме, где электрон с зарядом е вращается вокруг ядра с зарядом Z , и заряд Z увеличивается, радиус вращения R пропорционально уменьшается. Это происходит потому, что электрон притягивается к ядру с большей силой.

Энергия, необходимая для удаления одного моля электронов от одного моля атомов какого-либо элемента, называется первой энергией ионизации данного элемента (точное определение величины содержится в гл. 5). Энергия, необходимая для удаления одного моля электронов из одного моля однозарядных положительных ионов какого-либо элемента, называется его второй энергией ионизации т. Например, первая и вторая энергии ионизации натрия определяются следующим образом:

Следует обратить внимание на то, что энергии ионизации относятся к атомам или ионам в газообразном состоянии. Отметим также, что энергия, необходимая для удаления второго электрона из атома натрия, почти в 10 раз превышает энергию, необходимую для удаления первого электрона. Для каждого элемента число энергий ионизации равно атомному номеру.

Экспериментальное определение энергий ионизации.

Для экспериментального определения энергий ионизации можно воспользоваться атомными спектрами или методом электронного удара.

Атомные спектры. Как мы уже видели, предел сходимости для серии линий в атомном спектре соответствует ионизации атома. Частота излучения, отвечающая пределу сходимости, связана с энергией ионизации соотношением .

Выше были описаны несколько серий линий в спектре атомарного водорода; каждая серия имеет свой предел сходимости. Какую из них следует выбрать для определения энергии ионизации? Напомним, что энергия ионизации необходима для возбуждения электрона из его основного состояния и полного удаления этого электрона из атома. По надписям на рис. 1.14 видно, что серия Лаймана соответствует возвращению возбужденного электрона в основное состояние. Именно эту серию и следует выбрать, чтобы по ее пределу сходимости определить энергию ионизации.

Метод электронного удара. В газоразрядную трубку вводят газообразный образец исследуемого элемента. Этот образец подвергают бомбардировке электронами, которые испускаются катодом разрядной трубки. Электроны предварительно разгоняют в электрическом поле, создаваемом между катодом и проволочной сеткой. Напряженность этого поля постепенно увеличивают до тех пор, пока не произойдет внезапное усиление тока, вызванное ионизацией образца. По разности потенциалов между катодом и сеткой, которая соответствует началу ионизации, можно вычислить энергию ионизации исследуемого элемента.