С какой энергией кинетической или потенциальной. Конспект урока "Энергия. Потенциальная и кинетическая энергия"

1. Потенциальная энергия - энергия, определяемая взаимным расположением тел или отдельных частей тела относительно друг друга.

Когда меняется конфигурация системы тел или частиц одного тела относительно друг друга, должна совершаться работа.

Пространство, в каждой точке которого на тело действует определенная сила, называется физическим или силовым полем .

Поэтому когда тело перемещается вблизи Земли, то говорят, что тело двигается в силовом поле тяготения Земли или в потенциальном поле Земли . Потенциальная энергия тяготения равна (W пот) тяг. = mgh,

h - расстояние между телом и Землей.

В растянутой (или сжатой) пружине на каждую ее точку действует сила упругости, в этом случае можно говорить о потенциальном поле упругости . Потенциальная энергия упругости равна (W пот) упр. = (kl 2)/2, l - длина растянутой пружины, отсчет х от положения равновесия.

При делении сил, действующих на тело, на внешние и внутренние рассмотренные в примерах сила тяготения (в системе "тело - Земля") и сила упругости растянутой (сжатой) пружины можно отнести к внутренним силам. Поэтому верно утверждение, что каждой конфигурации произвольной системы частиц присуща своя собственная потенциальная энергия, и работа всех внутренних потенциальных сил, приводящая к изменению этой конфигурации, равна взятому со знаком минус приращению (убыли) потенциальной энергии системы.

Понятие потенциальной энеpгии - собиpательное. Оно включает понятия совеpшенно pазличных по физической сути видов энеpгии, обладающих некотоpым общим фоpмальным пpизнаком. Установим этот пpизнак.
Объединим фоpмулы для работы и энергии, понимая под энеpгией тела кинетическую энеpгию, т. е. полагая, что Еk = mv^2/2. Получим pавенство

Пpедположим, что тело находится в некотоpом поле сил, т. е. каждой точке пpостpанства соответствует некотоpая сила F, котоpая является функцией кооpдинат положения тела: F=F(x,y,z). Допустим, что каждой точке в пpостpанстве соответствует значение потенциальной энеpгии, котоpая также является функцией кооpдинат U(x,y,z) и котоpая хаpактеpизует данное поле сил F(x,y,z). Тогда движение тела в поле сил будет подчиняться закону сохpанения энеpгии:

Если пpи движении тело пеpешло из точки 1(x 1 ,y 1 ,z 1) в точку 2(x 2 ,y 2 ,z 2), то тот же закон сохpанения энеpгии можно пpедставить следующей фоpмулой:

Энеpгия в начале движения pавна энеpгии в конце движения. Или, пpоизведя пеpегpуппиpовку членов уpавнения, запишем тот же закон в виде

Сопоставляя эти фоpмулы, можно записать:

Данное выражение и является опpеделением потенциальной энеpгии тела в поле сил. Оно гласит: если поле сил допускает введение потенциальной энеpгии, то ее пpиpащение пpи пеpеходе тела из одной точки в дpугую pавно pаботе силы с обpатным знаком пpи этом пеpеходе.
Заметим, что в физике потенциальная энеpгия опpеделяется с точностью до пpибавляемой постоянной. Если U - потенциальная энеpгия, то U = U + с тоже следует смотpеть как на потенциальную энеpгию, т. к. их пpиpащения pавны:

Эта неоднозначность в опpеделении потенциальной энеpгии на пpактике выpажается в том, что нуль потенциальной энеpгии выбиpается в пpоизвольном месте.
Веpнемся к опpеделению потенциальной энеpгии (2.60). Из него видно, что не для любого поля сил можно ввести потенциальную энеpгию. Ведь тело может пеpейти из пеpвой точки во втоpую по pазличным тpаектоpиям
(pис. 2.9).



Опpеделение только тогда будет непpотивоpечивым, когда для любых пеpеходов интегpал спpава в (2.60) будет один и тот же. Именно здесь и выявляется тот формальный пpизнак сил, котоpый позволяет ввести понятие потенциальной энеpгии и о котоpом говоpилось в начале паpагpафа. Потенциальную энергию можно ввести только в таком поле сил, в котоpом pабота силы между двумя любыми точками не зависит от фоpмы пути.
Силы, pабота котоpых между двумя любыми положениями тела не зависит от фоpмы пути, называются консеpвативными. Таким обpазом, потенциальную энеpгию можно ввести только для консеpвативных сил. Пpиведем пpимеpы неконсеpвативной и консеpвативной сил. Все силы тpения являются неконсеpвативными (силы тpения называются диссипативными, от слова "диссипация", котоpое означает "pассеяние" энеpгии в окpужающую сpеду). Совеpшенно очевидно, что pабота силы тpения зависит от фоpмы пути, т.к. она всегда зависит от длины пути. Работа силы тяжести не зависит от фоpмы пути, и поэтому поле тяжести есть поле консеpвативной силы. Докажем это. Пусть тело под действием силы тяжести пеpемещается из точки 1 в точку 2. Найдем pаботу пpи его пеpемещении на dl.

Из pис. 2.10 следует, что работа по данной траектории

Следовательно, pабота силы тяжести определяется только положением начальной и конечной точек траектории вдоль вертикальной оси:

Она, как видим, не зависит от фоpмы пути. Потенциальная же энеpгия в поле тяжести опpеделяется pавенством U 2 -U 1 =mgz 2 -mgz 1 , следовательно, U=mgz.
К консеpвативным силам относятся упpугие силы, силы тяготения. Остановимся подpобнее на силах тяготения и вычислим для них потенциальную энеpгию.

Сила тяготения относится к классу центpальных. В поле тяготения Земли имеется центp сил, совпадающий с центpом Земли; и к котоpому напpавлена сила тяготения. Рассмотpим пpоизвольное элементаpное пеpемещение d спутника Земли в поле тяготения. Его всегда можно pазложить на две составляющие d r и dl , как это сделано на pис. 2.11. d lr напpавлено по pадиусу-вектоpу, dl пеpпендикуляpно к нему.

Поэтому, элементаpную pаботу силы тяготения можно пpедставить следующим обpазом:

Т.к.

Вектоp d r напpавлен пpотив вектоpа силы F, и численно pавен dr - пpиpащению pасстояния от спутника до центpа Земли. Поэтому .
Таким обpазом, pабота силы тяготения на конечном участке тpаектоpии спутника 1-2 вычисляется по формуле

Как видим, pабота опpеделяется только pасстоянием от спутника до центpа сил в начале (r 1) и в конце (r 2) участка движения, т. е. не зависит от фоpмы пути. Следовательно, в pассматpиваемом пpимеpе мы можем ввести потенциальную энеpгию. Ее изменение pавно pаботе силы тяжести со знаком минус. Отсюда

Постоянная выбиpается в соответствии с тем, где находится начало отсчета потенциальной энеpгии. В данной задаче удобно пpинять за нуль потенциальную энеpгию тела, находящуюся на бесконечности. U = 0 пpи r , следовательно, Const = 0.

Тогда

Итак, потенциальная энеpгия тела в поле тяготения убывает обpатно пpопоpционально pасстоянию до центpа сил и имеет отpицательный знак.
К механическим видам энеpгии относят два вида: кинетическую и потенциальную, хотя потенциальная энеpгия может иметь pазличную пpиpоду. Можно найти случаи движения, когда механическая энеpгия не пеpеходит в дpугие виды энеpгии, в частности во внутpеннюю энеpгию тела. Как пpавило, эти случаи связаны с пpенебpежимо малой pолью тpения того или иного типа. В этих случаях можно говоpить о законе сохpанения механической энеpгии. Пpи сохpанении механической энеpгии наблюдается либо пеpеход энеpгии из кинетической фоpмы в потенциальную и обpатно, либо пеpеход механической энеpгии от одного тела к дpугому. Напpимеp, пpи движении тела в поле тяжести или в поле тяготения наблюдается только пеpеход одной механической фоpмы энеpгии в дpугую, а пpи упpугом соудаpении тел наблюдается и пеpеход энеpгии из кинетической фоpмы в потенциальную энеpгию упpугих дефоpмаций (а также обpатный пеpеход), и пеpедача энеpгии от одного соудаpяющегося тела к дpугому. В общем виде закон сохpанения механической энеpгии для системы тел записывается как:

Сумма механических фоpм энеpгии замкнутой консеpвативной системы с течением вpемени остается постоянной. Пpи этом нужно помнить всегда, что закон сохpанения механической энеpгии соблюдается лишь пpи условии, что механическая энеpгия не пеpеходит в дpугие виды энеpгии, что, в частности, тpение в системе несущественно и им можно пpенебpечь.
Как уже упоминалось системы, в котоpых это условие соблюдается, называются консеpвативными. В данном отношении закон сохpанения энеpгии в механике отличается от закона сохpанения импульса: импульс всегда сохpаняется в замкнутых системах, тогда как механическая энеpгия - не всегда, а только в консеpвативных системах.

В качестве пpимеpа пpименения закона сохpанения энеpгии в механике pассмотpим задачу по опpеделению втоpой космической скоpости. Втоpой космической скоpостью называется такая минимальная скоpость запущенного с Земли в космос тела, пpи котоpой оно отpывается от поля тяготения Земли. Такое тело на бесконечности (т. е. очень далеко от Земли) полностью теpяет скоpость. Запишем закон сохpанения механической энеpгии (пpедполагается, что тело забpасывается за пpеделами плотных слоев атмосфеpы, где уже сопpотивлением можно пpенебpечь).

Const выpажает полную энеpгию тела. Найдем ее из условия для энеpгии тела на бесконечности. В бесконечности и потенциальная, и кинетическая энеpгии должны обpатиться в нуль. Следовательно, Сonst = 0, и закон сохpанения энеpгии пpимет вид

Обозначим втоpую космическую скоpость чеpез v 0 . Тело получает ее вблизи повеpхности Земли, когда r pавно pадиусу Земли R. Следовательно,

Вблизи повеpхности Земли сила тяготения pавна силе тяжести тела, т.е.

Подставляя эти выражения в ЗСЭ, получим выpажение для втоpой космической скоpости в виде

Понятие энергии как физической величины вводится для характеристики способности тела или системы тел к совершению работы. Как известно, существуют различные виды энергии. Наряду с уже рассмотренной выше кинетической энергией, которой обладает движущееся тело, существуют различные виды потенциальной энергии: потенциальная энергия в поле тяжести, потенциальная энергия растянутой или сжатой пружины или вообще любого упруго деформированного тела и т. д.

Превращения энергии. Основное свойство энергии заключается в ее способности к превращению из одного вида в другой в эквивалентных количествах. Известные примеры таких превращений - переход потенциальной энергии в кинетическую при падении тела с высоты, переход кинетической энергий в потенциальную при подъеме брошенного вверх тела, чередующиеся взаимные превращения кинетической и потенциальной энергий при колебаниях маятника. Каждый из вас может привести массу других подобных примеров.

Потенциальная энергия связана с взаимодействием тел или частей одного тела. Для последовательного введения этого понятия естественно рассмотреть систему взаимодействующих тел. Отправным пунктом здесь может служить теорема о кинетической энергии системы, определяемой как сумма кинетических энергий составляющих систему частиц:

Работа внутренних сил. Как и раньше, когда обсуждался закон сохранения импульса системы тел, будем делить действующие на тела системы силы на внешние и внутренние. По аналогии с законом изменения импульса можно было бы ожидать, что для системы материальных точек изменение кинетической энергии системы будет равно работе только внешних сил, действующих на систему. Но легко видеть, что это не так. При рассмотрении

изменения полного импульса системы импульсы внутренних сил взаимно уничтожались из-за третьего закона Ньютона. Однако работы внутренних сил попарно уничтожаться не будут, так как в общем случае частицы, на которые эти силы действуют, могут совершать разные перемещения.

Действительно, при вычислении импульсов внутренних сил они умножались на одно и то же время взаимодействия, а при вычислении работы эти силы умножаются на перемещения соответствующих тел, которые могут различаться. Например, если две притягивающиеся частицы переместятся навстречу друг другу, то внутренние силы их взаимодействия совершат положительные работы и их сумма будет отлична от нуля.

Таким образом, работа внутренних сил может привести к изменению кинетической энергии системы. Именно благодаря этому обстоятельству механическая энергия системы взаимодействующих тел не сводится только к сумме их кинетических энергий. Полная механическая энергия системы наряду с кинетической энергией включает в себя потенциальную энергию взаимодействия частиц системы. Полная энергия зависит от положений и скоростей частиц, т. е. она представляет собой функцию механического состояния системы.

Потенциальная энергия. Наряду с делением сил, действующих на частицы системы, на внешние и внутренние, для введения понятия потенциальной энергии нужно разбить все силы на две группы по другому признаку.

В первую группу отнесем силы, работа которых при изменении взаимных положений частиц не зависит от способа изменения конфигурации системы, т. е. от того, по каким траекториям и в какой последовательности частицы системы перемещаются из своих начальных положений в конечные. Такие силы будем называть потенциальными. Примерами потенциальных сил могут служить силы тяготения, кулоновские силы электростатического взаимодействия заряженных частиц, упругие силы. Соответствующие силовые поля также называются потенциальными.

Ко второй группе отнесем силы, работа которых зависит от формы пути. Эти силы объединим под названием непотенциальных. Наиболее характерный пример непотенциальных сил - сила трения скольжения, направленная противоположно относительной скорости.

Работа в однородном поле. Потенциальная энергия количественно определяется через работу потенциальных сил. Рассмотрим, например, некоторое тело в однородном поле тяжести Земли, которую из-за ее большой массы будем считать неподвижной. В однородном поле действующая на тело сила тяжести всюду одинакова, и потому, как было показано в предыдущем параграфе,

ее работа при перемещении тела не зависит от формы траектории, соединяющей начальную и конечную точки. Работа силы тяжести при перемещении тела из положения 1 в положение 2 (рис. 115) определяется только разностью высот в начальном и конечном положениях:

Так как работа не зависит от формы пути, она может служить характеристикой начальной и конечной точек, т. е. характеристикой самого силового поля.

Рис. 115. Работа силы тяжести при перемещении из положения 1 в положение 2 равна

Примем какую-либо точку поля (например, ту, от которой отсчитаны высоты в формуле за начало отсчета и будем рассматривать работу, совершаемую силой тяжести при перемещении частицы в эту точку из другой произвольной точки Р, находящейся на высоте Эта работа, как следует из (2), равна и называется потенциальной энергией частицы в точке Р:

Фактически это есть потенциальная энергия гравитационного взаимодействия тела и Земли, создающей это поле.

Работа и потенциальная энергия. Работа силы тяжести при перемещении тела из точки 1 в точку 2, даваемая формулой (2), равна разности потенциальных энергий в начальной и конечной точках пути:

В произвольном потенциальном поле, где модуль и направление силы зависят от положения частицы, потенциальная энергия в некоторой точке Р, как и в однородном поле, равна работе силы поля при перемещении частицы из этой точки Р в начало отсчета, т. е. в фиксированную точку, потенциальная энергия в которой принята равной нулю. Выбор точки, в которой потенциальная энергия принимается равной нулю, произволен и определяется только соображениями удобства. Например, в однородном поле тяжести Земли отсчет высоты и потенциальной энергии удобно вести от поверхности Земли (уровня моря).

Отмеченная неоднозначность в определении потенциальной энергии никак не сказывается на результатах при практическом использовании понятия потенциальной энергии, так как физический смысл

имеет только изменение потенциальной энергии, т. е. разность ее значений в двух точках поля, через которую выражается работа сил поля при перемещении тела из одной точки в другую.

Центральное поле. Покажем потенциальный характер центрального поля, в котором сила зависит только от расстояния до силового центра и направлена по радиусу. Примерами центральных полей могут служить поле тяготения планеты или любого тела со сферически-симметричным распределением масс, электростатическое поле точечного заряда и т. д.

Пусть тело, на которое действует центральная сила направленная по радиусу от силового центра О (рис. 116), перемещается из точки 1 в точку 2 по некоторой кривой. Разобьем весь путь, на маленькие участки так, чтобы силу в пределах каждого участка можно было считать постоянной. Работа силы на таком участке

Но как видно из рис. 116, есть проекция элементарного перемещения на направление радиуса-вектора проведенного из силового центра: Таким образом, - работа на отдельном участке равна произведению силы на изменение расстояния до силового центра. Суммируя работы на всех участках, убеждаемся, что работа сил поля при перемещении тела из точки I в точку 2 равна работе по перемещению вдоль радиуса из точки I в точку 3 (рис. 116). Итак, эта работа определяется только начальным и конечным расстояниями тела от силового центра и не зависит от формы пути, что и доказывает потенциальный характер любого центрального поля.

Рис. 116. Работа сил центрального поля

Потенциальная энергия в поле тяготения. Чтобы получить явное выражение для потенциальной энергии тела в некоторой точке поля, нужно рассчитать работу при перемещении тела из этой точки в другую, потенциальная энергия в которой принимается равной нулю. Приведем выражения для потенциальной энергии в некоторых важных случаях центральных полей.

Потенциальная энергия гравитационного взаимодействия точечных масс и М или тел со сферически-симметричным распределением масс, центры которых находятся на расстоянии друг от друга, дается выражением

Разумеется, об этой энергии можно говорить и как о потенциальной энергии тела массы в поле тяготения, создаваемом телом массы М. В выражении (5) потенциальная энергия принята равной нулю при бесконечно большом расстоянии между взаимодействующими телами: при

Для потенциальной энергии тела массы в поле тяготения Земли удобно видоизменить формулу (5) с учетом соотношения (7) из § 23 и выразить потенциальную энергию через ускорение свободного падения поверхности Земли и радиус Земли

Если высота тела над поверхностью Земли мала по сравнению с радиусом Земли то, подставляя в в виде и используя приближенную формулу можно преобразовать формулу (6) следующим образом:

Первое слагаемое в правой части (7) можно опустить, так как оно постоянно, т. е. не зависит от положения тела. Тогда вместо (7) имеем

что совпадает с формулой (3), полученной в приближении «плоской» Земли для однородного поля тяжести. Подчеркнем, однако, что в отличие от (6) или (7) в формуле (8) потенциальная энергия отсчитывается от поверхности Земли.

Задачи

1. Потенциальная энергия в поле тяготения Земли. Чему равна потенциальная энергия тела на поверхности Земли и на бесконечно большом расстоянии от Земли, если принять ее равной нулю в центре Земли?

Решение. Чтобы найти потенциальную энергию тела на поверхности Земли при условии, что она равна нулю в центре Земли, нужно рассчитать работу, совершаемую силой тяготения при мысленном перемещении тела с поверхности Земли в ее центр. Как было выяснено ранее (см. формулу (10) § 23), действующая на находящееся в глубине Земли тело сила тяготения пропорциональна его расстоянию от центра Земли, если считать Землю однородным шаром с одинаковой всюду плотностью:

Для вычисления работы весь путь от поверхности Земли до ее центра разбиваем на малые участки, на протяжении которых силу можно считать постоянной. Работа на отдельном малом участке изображается на графике зависимости силы от расстояния (рис. 117) площадью узкой заштрихованной полоски. Эта работа положительна, так как направления силы тяжести и перемещения совпадают. Полная работа, очевидно,

изображается площадью треугольника с основанием и высотой

Значение потенциальной энергии на поверхности Земли равно работе, даваемой формулой (9):

Для того чтобы найти значение потенциальной энергии на бесконечно большом расстоянии от Земли, следует учесть, что разность потенциальных энергий на бесконечности и на поверхности Земли равна, в соответствии с (6), и не зависит от того, где выбран нуль потенциальной энергии. Именно такую величину нужно прибавить к значению (10) потенциальной энергии на поверхности, чтобы получить искомое значение на бесконечности:

2. График потенциальной энергии. Постройте график потенциальной энергии тела массы в поле тяготения Земли, считая ее однородным шаром.

Решение. Примем для определенности значение потенциальной энергии в центре Земли равным нулю.

Рис. 117. К расчету потенциальной энергии

Рис. 118. График потенциальной энергии

Для любой внутренней точки, находящейся на расстоянии от центра Земли, потенциальная энергия рассчитывается так же, как и в предыдущей задаче: как следует из рис. 117, она равна площади треугольника с основанием и высотой Таким образом,

Для построения графика потенциальной энергии при где сила убывает обратно пропорционально квадрату расстояния (рис. 117), следует воспользоваться формулой (6). Но в соответствии со сделанным выбором точки отсчета потенциальной энергии к значению, даваемому

мулой (6), следует прибавить постоянную величину Поэтому

Полный график показан на На участке от центра Земли до ее поверхности он представляет собой отрезок параболы (12), минимум которой расположен при Такую зависимость иногда называют «квадратичной потенциальной ямой». На участке от поверхности Земли до бесконечности график представляет собой отрезок гиперболы (13). Эти отрезки параболы и гиперболы плавно, без излома, переходят друг в друга. Ход графика соответствует тому, что в случае сил притяжения потенциальная энергия возрастает при увеличении расстояния.

Энергия упругой деформации. К потенциальным силам относятся также и силы, возникающие при упругой деформации тел. В соответствии с законом Гука эти силы пропорциональны деформации. Поэтому потенциальная энергия упругой деформации квадратично зависит от деформации. Это становится сразу ясным, если учесть, что зависимость силы от смещения из положения равновесия здесь такая же, как и у рассмотренной выше силы тяжести, действующей на тело внутри однородного массивного шара. Например, при растяжении или сжатии на упругой пружины жесткости к, когда действующая сила потенциальная энергия дается выражением

Здесь принято, что в положении равновесия потенциальная энергия равна нулю.

Потенциальная энергия в каждой точке силового поля имеет определенное значение. Поэтому она может служить характеристикой этого поля. Таким образом, силовое поле можно описать, задавая либо силу в каждой точке, либо значение потенциальной энергии. Эти способы описания потенциального силового поля эквивалентны.

Связь силы и потенциальной энергии. Установим связь этих двух способов описания, т. е. общее соотношение между силой и изменением потенциальной энергии. Рассмотрим перемещение тела между двумя близкими точками поля. Работа сил поля при этом перемещении равна . С другой стороны, эта работа равна разности значений потенциальной энергии в начальной и конечной точках перемещения т. е. взятому с обратным знаком изменению потенциальной энергии. Поэтому

Левую часть этого соотношения можно записать в виде произведения проекции силы на направление перемещения и модуля этого перемещения Отсюда

Проекция потенциальной силы на произвольное направление может быть найдена как взятое с обратным знаком отношение изменения потенциальной энергии при малом перемещении вдоль этого направления к модулю перемещения.

Эквипотенциальные поверхности. Обоим способам описания потенциального поля можно сопоставить наглядные геометрические образы - картины силовых линий или эквипотенциальных поверхностей. Потенциальная энергия частицы в силовом поле является функцией ее координат. Приравнивая постоянной величине, получаем уравнение поверхности, во всех точках которой потенциальная энергия имеет одно и то же значение. Эти поверхности равных значений потенциальной энергии, называемые эквипотенциальными, дают наглядную картину силового поля.

Сила в каждой точке направлена перпендикулярно проходящей через эту точку эквипотенциальной поверхности. Это легко увидеть с помощью формулы (15). В самом деле, выберем перемещение вдоль поверхности постоянной энергии. Тогда , следовательно, равна нулю проекция силы на поверхность Так, например, в гравитационном поле, создаваемом телом массы М со сферически-симметричным распределением масс, потенциальная энергия тела массы дается выражением Поверхности постоянной энергии такого поля представляют собой сферы, центры которых совпадают с силовым центром.

Действующая на массу сила перпендикулярна эквипотенциальной поверхности и направлена к силовому центру. Проекцию этой силы на радиус, проведенный из силового центра, можно найти из выражения (5) для потенциальной энергии с помощью формулы (15):

что при дает

Полученный результат подтверждает приведенное выше без доказательства выражение для потенциальной энергии (5).

Наглядное представление о поверхностях равных значений потенциальной энергии можно составить на примере рельефа пересеченной

местности. Точкам земной поверхности, находящимся на одном горизонтальном уровне, соответствуют одинаковые значения потенциальной энергии поля тяготения. Эти точки образуют непрерывные линии. На топографических картах такие линии называются горизонталями. По горизонталям легко восстановить все черты рельефа: холмы, впадины, седловины. На крутых склонах горизонтали идут гуще, ближе друг к другу, чем на пологих. В этом примере равным значениям потенциальной энергии соответствуют линии, а не поверхности, так как здесь речь идет о силовом поле, где потенциальная энергия зависит от двух координат (а не от трех).

Объясните различие между потенциальными и непотенциальными силами.

Что такое потенциальная энергия? Какие силовые поля называются потенциальными?

Получите выражение (2) для работы силы тяжести в однородном поле Земли.

С чем связана неоднозначность потенциальной энергии и почему эта неоднозначность никак не сказывается на физических результатах?

Докажите, что в потенциальном силовом поле, где работа при перемещении тела между любыми двумя точками не зависит от формы траектории, работа при перемещении тела по любому замкнутому пути равна нулю.

Получите выражение (6) для потенциальной энергии тела массы в поле тяготения Земли. Когда справедлива эта формула?

Как зависит потенциальная энергия в поле тяготения Земли от высоты над поверхностью? Рассмотрите случаи, когда высота мала и когда она сравнима с радиусом Земли.

Укажите на графике зависимости потенциальной энергии от расстояния (см. рис. 118) область, где справедливо линейное приближение (7).

Вывод формулы для потенциальной энергии. Чтобы получить формулу (5) для потенциальной энергии в центральном поле тяготения, нужно вычислить работу сил поля при мысленном перемещении тела массы из данной точки в бесконечно удаленную точку. Работа в соответствии с формулой (4) § 31, выражается интегралом от силы вдоль траектории, по которой перемещается тело. Так как эта работа не зависит от формы траектории, вычислять интеграл можно для перемещения по радиусу, проходящему через интересующую нас точку;

Окружающий мир пребывает в постоянном движении. Любое тело (объект) способно выполнить определенную работу, даже если оно в состоянии покоя. Но для совершения любого процесса требуется приложить некоторые усилия , порой немалые.

В переводе с греческого языка этот термин означает «деятельность», «сила», «мощь». Все процессы на Земле и за пределами нашей планеты происходят благодаря этой силе, которой обладают окружающие объекты, тела, предметы.

Вконтакте

Среди большого разнообразия выделяют несколько основных видов данной силы, отличающихся прежде всего своими источниками:

  • механическая – данный вид характерен для движущихся в вертикальной, горизонтальной или другой плоскости тел;
  • тепловая – выделяется в результате неупорядоченного молекул в веществах;
  • – источником этого вида является движение заряженных частиц в проводниках и полупроводниках;
  • световая – переносчиком ее являются частицы света – фотоны;
  • ядерная – возникает вследствие самопроизвольного цепного деления ядер атомов тяжелых элементов.

В этой статье пойдет речь о том, что собой представляет механическая сила предметов, из чего она состоит, от чего зависит и как преобразуется во время различных процессов.

Благодаря этому виду предметы, тела могут находиться в движении либо в состоянии покоя. Возможность такой деятельности объясняется присутствием двух основных составляющих:

  • кинетической (Ек);
  • потенциальной (Еп).

Именно сумма кинетической и потенциальной энергий определяет общий численный показатель всей системы. Теперь о том, какие формулы используются для расчетов каждой из них, и в чем измеряется энергия.

Как рассчитать энергию

Кинетическая энергия – это характеристика любой системы, которая находится в движении . Но как найти кинетическую энергию?

Сделать это несложно, так как расчетная формула кинетической энергии весьма проста:

Конкретное значение определяется двумя основными параметрами: скоростью перемещения тела (V) и его массой (m). Чем больше данные характеристики, тем большей значением описываемого явления обладает система.

Но если объектом не совершаются перемещения (т.е. v = 0), то и кинетическая энергия равна нулю.

Потенциальная энергияэто характеристика, зависящая от положения и координат тел .

Любое тело подвержено земному притяжению и воздействию сил упругости. Такое взаимодействие объектов между собой наблюдается повсеместно, поэтому тела находятся в постоянном движении, меняют свои координаты.

Установлено, чем выше от поверхности земли находится предмет, чем больше его масса, тем большим показателем данной величины оно обладает .

Таким образом, зависит потенциальная энергия от массы (m) , высоты (h). Величина g – ускорение свободного падения, равное 9,81 м/сек2. Функция расчета ее количественного значения выглядит так:

Единицей измерения этой физической величины в системе СИ считается джоуль (1 Дж) . Именно столько нужно затратить сил, чтобы переместить тело на 1 метр, приложив при этом усилие в 1 ньютон.

Важно! Джоуль как единица измерения утвержден на Международном конгрессе электриков, который проходил в 1889 году. До этого времени эталоном измерения была Британская термическая единица BTU, используемая в настоящее время для определения мощности тепловых установок.

Основы сохранения и превращения

Из основ физики известно, что суммарная сила любого объекта, независимо от времени и места его пребывания, всегда остается величиной постоянной, преобразуются лишь ее постоянные составляющие (Еп) и (Ек).

Переход потенциальной энергии в кинетическую и обратно происходит при определенных условиях.

Например, если предмет не перемещается, то его кинетическая энергия равна нулю, в его состоянии будет присутствовать только потенциальная составляющая.

И наоборот, чему равна потенциальная энергия объекта, например, когда он находится на поверхности (h=0)? Конечно, она нулевая, а Е тела будет состоять только из ее составляющей Ек.

Но потенциальная энергия – это мощность движения . Стоит только системе приподняться на какую- то высоту, после чего его Еп сразу начнет увеличиваться, а Ек на такую величину, соответственно, уменьшаться. Эта закономерность просматривается в вышеуказанных формулах (1) и (2).

Для наглядности приведем пример с камнем либо мячом, которые подбрасывают. В процессе полета каждый из них обладает и как потенциальной, так и кинетической составляющей. Если одна увеличивается, то другая на такую же величину уменьшается.

Полет предметов вверх продолжается лишь до тех пор, пока хватит запаса и сил у составляющей движения Ек. Как только она иссякла, начинается падение.

А вот чему равна потенциальная энергия предметов в самой верхней точке, догадаться нетрудно, она максимальная .

При их падении происходит все наоборот. При касании с землей уровень кинетической энергии равен максимуму.

Энергия взаимодействия тел. Потенциальной энергией тело само по себе не может обладать. определяется силой, действующей на тело со стороны другого тела. Поскольку взаимодействующие тела равноправны, то потенциальной энергией обладают только взаимодействующие тела.

A = Fs = mg (h 1 - h 2 ).

Теперь рассмотрим движение тела по наклонной плоскости. При перемещении тела вниз по наклонной плоскости сила тяжести совершает работу

A = mgscosα .

Из рисунка видно, что s cosα = h , следовательно

А = mg h .

Выходит, что работа силы тяжести не зависит от траектории движения тела.

Равенство A = mg (h 1 - h 2 ) можно записать в виде A = - (mg h 2 - mgh 1 ).

Т. е. работа силы тяжести при перемещении тела массой m из точки h 1 в точку h 2 по любой траектории равна изменению некоторой физической величины mgh с противоположным знаком.

Физическая величина , равная произведению массы тела на модуль ускорения свободного падения и на высоту, на которую поднято тело над поверхностью Земли, называется потенциальной энергией тела.

Потенциальную энергию обозначают через Е р . Е р = mgh , следовательно:

A = - (Е р 2 - Е р 1 ).

Тело может обладать как положительной, так и отрицательнойпотенциальной энергией. Тело массой m на глубине h от поверхности Земли обладает отрицательной потенциальной энергией: Е р = - mgh .

Рассмотрим потенциальную энергию упругодеформированного тела.

Прикрепим к пружине с жесткостью k брусок, растянем пружину и отпустим брусок. Под действием силы упругости растянутая пружина приведет в действие брусок и переместит его на некоторое расстояние. Вычислим работу силы упругости пружины от некоторого начального значения x 1 до конечного x 2 .

Сила упругости в процессе деформации пружины изменяется. Чтобы найти работу силы упругости можно взять произведение среднего значения модуля силы и модуля перемещения:

А = F у.ср (x 1 - x 2 ).

Так как сила упругости пропорциональна деформации пружины, то среднее значение ее модуля равно

Подставив это выражение в формулу работы силы, получим:

Физическую величину , равную половине произведения жесткости тела на квадрат его деформации, называют потенциальной энергией упругодеформированного тела:

Откуда следует, что A = - (Е р2 - Е р1 ).

Как и величина mgh , потенциальная энергия упругодеформированного тела зависит от координат, поскольку x 1 и x 2 - это удлинения пружины и в то же время - координаты конца пружины. Поэтому можно сказать, что потенциальная энергия во всех случаях зависит от координат.

Любое тело всегда обладает энергией. При наличии движения это очевидно: есть скорость либо ускорение, что, помноженное на массу, дает искомый результат. Однако в случае, когда тело неподвижно, оно, как ни парадоксально, также может быть охарактеризовано как обладающее энергией.

Итак, возникает при движении, потенциальная - при взаимодействии нескольких тел. Если с первой все более-менее очевидно, то нередко сила, возникающая между двумя неподвижными объектами, остается за гранью понимания.

Общеизвестно, что планета Земля воздействует на все тела, находящиеся на ее поверхности за счет То есть она притягивает любой предмет с определенной силой. При перемещении предмета, изменении его высоты, происходит также изменение показателей энергии. Непосредственно в момент поднятия тело обладает ускорением. Однако в высшей своей точке, когда предмет (пусть даже на долю секунды) неподвижен, он обладает потенциальной энергией. Все дело в том, что его по-прежнему тянет к себе поле Земли, с которым искомое тело взаимодействует.

Говоря иначе, потенциальная энергия возникает всегда за счет взаимодействия нескольких предметов, образующих систему, вне зависимости от размеров самих предметов. При этом по умолчанию один из них представлен нашей планетой.

Потенциальная энергия - величина, зависящая от массы предмета и высоты, на которую он поднят. Международное обозначение - латинские буквы Ep. выглядит следующим образом:

Где m - масса, g - ускорение h - высота.

Важно рассмотреть более подробно параметр высоты, поскольку он нередко становится причиной затруднений при решении задач и понимании значения рассматриваемой величины. Дело в том, что любое вертикальное передвижение тела имеет свою начальную и конечную точку. Для корректного нахождения потенциальной энергии взаимодействия тел важно знать начальную высоту. Если она не указана, то ее значение равняется нулю, то есть совпадает с поверхностью Земли. В случае же, если известна как начальная точка отсчета, так и конечная высота, необходимо найти разницу между ними. Получившееся число и станет искомым h.

Важно также отметить, что потенциальная энергия системы может иметь отрицательное значение. Предположим, мы уже подняли тело над уровнем Земли, стало быть, оно имеет высоту, которую назовем начальной. При его опускании формула будет выглядеть таким образом:

Очевидно, что h1 больше h2, следовательно, значение будет отрицательным, что и придаст всей формуле знак минус.

Любопытно, что потенциальная энергия тем выше, чем дальше от поверхности Земли расположено тело. Для того чтобы лучше понять этот факт, задумаемся: чем выше нужно поднять тело над Землей, тем основательнее совершенная работа. Чем выше значение работы любой силы, тем, условно говоря, больше вложено энергии. Потенциальная энергия, иначе говоря, - это энергия возможности.

Подобным образом можно измерить энергию взаимодействия тел при растяжении предмета.

В рамках рассматриваемой темы необходимо отдельно обсудить взаимодействие заряженной частицы и электрического поля. В подобной системе будет наличествовать потенциальная энергия заряда. Рассмотрим этот факт подробнее. На любой заряд, находящийся в пределах электрического поля, действует одноименная сила. Перемещение частицы происходит за счет работы, производимой этой силой. Учитывая, что собственно заряд и (точнее говоря, тело, его создавшее) - это система, мы также получаем потенциальную энергию перемещения заряда в рамках заданного поля. Поскольку данный вид энергии - особый случай, ему было присвоено название электростатического.