Полиморфные модификации углерода: алмаз и графит. Особенности и применение алмаза и графита

Узнав физические свойства алмаза и графита, ученые отметили, что это разные формы углерода. Первый – это драгоценный минерал, один из самых твердых в мире. По принятой у геммологов шкале Мооса алмаз имеет наибольший балл твердости – 10. Графит по этой системе не дотягивает даже до 2. Блестящая драгоценность и грифель простого карандаша состоят из углерода. Различие этих минералов определяет тип кристаллической решетки. Но свойства их сильно отличаются друг от друга. Об этом читайте ниже.

Что такое алмаз и графит

Алмаз – самый твердый минерал. Внешне это прозрачный камень, у которого четко видна кристаллическая форма. Диаманты бесцветные, но встречаются разные оттенки, среди которых даже черный. Цвет зависит от природных условий, в которых формировался камень, а также от различных примесей в его структуре.

Графит – хрупкое, жирное на ощупь вещество, имеющее металлический блеск, состоящее из молекул углерода, расположенных слоями и образующих мелкие тонкие пластинки. При его нажатии на листке остается след.

Состав минералов

Первое, с чего начнем рассмотрение характеристики алмаза и графита, это состав минералов. Оба – из углерода, шестого элемента периодической системы.

Поскольку алмаз и графит состоят из частиц углерода, тип вещества у них – индивидуальный, а качественный состав образован соединениями атомов углерода. Формула алмаза и графита в химии проста – С, углерод. Этот химический элемент не имеет запаха, поэтому ни алмаз, ни графит ничем не пахнут.

Хотя химическая формула алмаза имеет схожесть с формулой графита, у структур, в которые соединяются атомы углерода, образуя кристаллическую решетку, есть разница.

Когда у минералов кристаллические решетки имеют отличие, но для них характерен идентичный химический состав, их называют полиморфами. Рассматриваемые минералы – разные виды полиморфных модификаций углерода.

Как и где находят углеродные минералы

Сходство элементарного химического состава не обуславливает схожие свойства веществ. Различия объясняются сложностями происхождения двух разных углеродных пород. Алмазы образуются под действием сильного давления после сверхбыстрого охлаждения. А если атмосферное давление занижено, то при довольно высокой температуре образуется графит.

Подтверждением того, что алмаз и графит образовались не одинаково, служит их нахождение в природе. Около 80% всех бриллиантов добывают в кимберлитовых трубках – глубоких воронках, образованных магмой, вышедшей после взрыва и выхода наружу подземного газа.

Графитовых же месторождений много в осадочных породах и пластах, образованных магмой.

Химическая связь в углеродных минералах

Частицы, из которых состоят твердые вещества, соединены в кристаллические решетки. Науке известны 4 вида таких решеток – ионная, молекулярная, атомная и металлическая.

Внешне драгоценный кристалл схож с кристаллами соли, но у солей ионная кристаллическая решетка.

Тип кристаллической решетки алмаза, как и его полиморфа графита, атомная. В ее узлах лежат атомы углерода. Агрегатное состояние – твердое тело. Но все же по твердости углеродные полиморфы различны.

Свойство алмаза быть таким прочным обусловлено силой химической связи атомов. Структура диаманта трехмерная, атомы углерода в нем расположены в форме трехгранной пирамиды, тетраэдра. Каждая атомарная частица одинаково крепко соединяется со всеми четырьмя соседними, это осуществлено посредством ковалентной связи.

Атомарно графит – это множество слоев шестиугольных фигур, в каждой вершине которых расположен атом углерода. Его слоистая структура двухмерна. Связь в слоях ковалентная сильная, а между слоями гораздо слабее, как у веществ с молекулярной кристаллической решеткой. Пласты связаны непрочно. Поэтому твердость графита меньше по сравнению с бриллиантом.

Взаимосвязь атомного строения и физики минерала

Рассмотрим, как внешне проявляется геометрия атомов. Различие свойств алмаза и графита напрямую связано с типом строения кристаллической решетки. Кристаллическая решетка алмаза имеет звенья из 4 хорошо соединенных атомов углерода. Они образовали сверхпрочные ковалентные сигма-связи. Оптические свойства межатомных соединений поглощают свет, делая кристалл прозрачным. А крепкая фиксация отрицательно заряженных элементарных частиц в однородных по силе связях придает ему твердость и свойства диэлектрика.

Образованные ковалентные пи-соединения гексагональной кристаллической решетки графита скрепляют атомы углерода в слои. При такой связи несколько электронов остаются свободными, поэтому пласты скреплены между собой незначительно. Движение нелокализованных элементарных частиц со знаком минус придает графиту электропроводность. У них отсутствует световая проводимость, что лишает вещество прозрачности, поэтому у графита цвет черный.

Аллотропные модификации углерода

Аллотропия – это способность химических элементов существовать в двух и более физических формах (аллотропах). Самой широкой из всех открытых является аллотропия углерода.

Если вы перечислите основные углеродные аллотропные видоизменения, то это будут:

  • алмаз;
  • графит;
  • карбин;
  • фуллерен.

Из указанных выше два аллотропа углерода синтезированы. Карбин и фуллерен – полученные искусственно аллотропные видоизменения углерода. Карбин – порошок из мелких кристалликов черного цвета. После открытия в лаборатории было найдено и природное вещество. Фуллерен – синтезированный в конце прошлого века в США желтый кристалл около 5 мм в диаметре.

Аллотропические формы углерода могут трансформироваться. Сам по себе переход алмаза в другое состояние не произойдет. Но при нагревании кристалла в безвоздушном пространстве до 1800 градусов он превратится в графит.

Известны методы, позволяющие осуществить и обратные превращения.

Как получить драгоценный камень из графита

Получить алмаз можно из графита. При давлении выше 1000 Па и температуре 3000 градусов с добавлением металлов углерод в графите меняет ковалентные связи. Полученные в результате камни мутные и пористые.

Другой метод – это применение ударной волны, после которой можно любоваться чистыми, прозрачными кристаллами правильной геометрической формы, но очень маленького размера.

Несовершенство этих методов привело к выводу, что алмазы лучше всего выращивать. При нагреве бриллианта до 1,5 тысячи градусов он растет. Но это дорого, поэтому сегодня искусственные драгоценности получают из метана.

Физические и химические свойства

Алмаз не обладает электропроводностью, но тепло проводит. Хорошо преломляет и отражает свет. Прозрачен, имеет блеск. Плавится при 3700-4000 градусов. Лавуазье впервые сжег диамант в 18 веке.

Позже ученые выяснили, что в соединении с кислородом алмаз горит при 721-800 градусах, испаряясь углекислым газом. Без воздуха может перейти в графит при нагреве до 2001-3000 градусов. Химические свойства говорят об устойчивости к воздействию кислот.

Графит электро-и-теплопроводный, нерастворим кислотами и водой, теплостойкий. Температура плавления 2500 – 3000 градусов. Не горит до 250-300 градусов, но при сжигании с температурой выше 300 и до 1000 превращается в углекислый газ.

Сравнительная характеристика

Сравним строение алмаза и графита и их физические свойства: твердость, теплопроводность, электропроводность, особенности химической связи.

О характеристиках минералов расскажет подробная сравнительная таблица:

Введение

1.1.Общая характеристика алмаза

1.2. Общая характеристика графита

2. Промышленные типы месторождений гранита и алмаза

3. Природные и технологические типы алмазосодержащих и графитовых руд

4. Разработка месторождений гранита и алмаза

5. Области применения гранита и алмаза

Заключение

Список используемой литературы.


Введение

Алмазная промышленность нашей страны находится в стадии развития, внедрения новых технологий обработки минералов.

Найденные месторождения алмазов вскрываются лишь процессами эрозии. Для разведчика это означает, что существует множество «слепых» месторождений, не выходящих на поверхность. Об их присутствии можно узнать по обнаруженным локальным магнитным аномалиям, верхняя кромка которых располагается на глубине в сотни, а если повезет – то в десятки метров. (А. Портнов).

Исходя из вышесказанного, я могу судить о перспективности развития алмазной промышленности. Именно поэтому я выбрала тему – «Алмаз и графит: свойства, происхождение и значение».

В своей работе я попыталась проанализировать связь между графитом и алмазом. Для этого сравнила эти вещества с нескольких точек зрения. Я рассмотрела общую характеристику данных минералов, промышленные типы их месторождений, природные и технические типы, разработку месторождений, области применения, значение данных минералов.

Несмотря на то, что графит и алмаз полярные по своим свойствам, они являются полиморфными модификациями одного и того же химического элемента - углерода. Полиморфные модификации, или полиморфы - это вещества, которые имеют одинаковый химический состав, но различную кристаллическую структуру. С началом синтеза искусственных алмазов резко возрос интерес к исследованию и поискам полиморфных модификаций углерода. В настоящее время, кроме алмаза и графита, достоверно установленными можно считать лонсдейлит и чаотит. Первый во всех случаях был найден только в тесном взаимопрорастании с алмазом и поэтому называется еще гексагональным алмазом, а второй встречается в виде пластинок, чередующихся с графитом, но расположенных перпендикулярно его плоскости.


1. Полиморфные модификации углерода: алмаз и графит

Единственный минералообразующий элемент алмаза и графита - это углерод. Углерод (С) - химический элемент IV группы периодической системы химических элементов Д.И.Менделеева, атомный номер - 6, относительная атомная масса - 12,011(1). Углерод устойчив в кислотах и щелочах, окисляется только дихроматом калия или натрия, хлористым железом или алюминием. Углерод имеет два стабильных изотопа С(99,89%) и С(0,11%). Данные изотопного состава углерода показывают, что он бывает разного происхождения: биогенного, небиогенного и метеоритного. Многообразие соединений углерода, объясняющееся способностью его атомов соединяться друг с другом и атомами других элементов различными способами, обусловливает особое положение углерода среди других элементов.

1.1 Общая характеристика алмаза

При слове «алмаз» сразу же вспоминаются тайные истории, повествующие о поисках сокровищ. Когда-то люди, охотившиеся за алмазами, и не подозревали, что предметом их страсти является кристаллический углерод, который образует сажу, копоть и уголь. Впервые это доказал Лавуазье. Он поставил опыт по сжиганию алмаза, используя собранную специально для этой цели зажигательную машину. Оказалось, алмаз сгорает на воздухе при температуре около 850-1000*С, не оставляя твердого остатка, как и обычный уголь, а в струе чистого кислорода сгорает при температуре 720-800*С. При нагревании до 2000-3000*С без доступа кислорода он переходит в графит (это объясняется тем, что гомеополярные связи между атомами углерода в алмазе очень прочны, что обусловливает очень высокую температуру плавления.

Алмаз - бесцветное, прозрачное кристаллическое вещество, чрезвычайно сильно преломляющее лучи света.

Атомы углерода в алмазе находятся в состоянии sp3-гибридизации. В возбужденном состоянии происходит распаривание валентных электронов в атомах углерода и образование четырёх неспаренных электронов.

Каждый атом углерода в алмазе окружен четырьмя другими, расположенными от него в направлении от центра в вершинах тетраэдра.

Расстояние между атомами в тетраэдрах равно 0,154 нм.

Прочность всех связей одинакова.

Весь кристалл представляет собой единый трехмерный каркас.

При 20*С плотность алмаза составляет 3,1515 гр/см. Этим объясняется его исключительная твердость, которая по граням различна и уменьшается в последовательности: октаэдр - ромбододекаэдр - куб. В то же время алмаз обладает совершенной спайностью (по октаэдру), а предел прочности на изгиб и сжатие у него ниже, чем у других материалов, поэтому алмаз хрупок, при резком ударе раскалывается и при дроблении сравнительно легко превращается в порошок. Алмаз обладает максимальной жесткостью. Сочетание этих двух свойств позволяет использовать его для абразивных и других инструментов, работающих при значительном удельном давлении.

Показатель преломления (2,42) и дисперсия (0,063) алмаза намного превышают аналогичные свойства других прозрачных минералов, что в сочетании с максимальной твердостью обусловливает его качество как драгоценного камня.

В алмазах обнаружены примеси азота, кислорода, натрия, магния, алюминия, кремния, железа, меди и других, обычно в тысячных долях процента.

Алмаз чрезвычайно стоек к кислотам и щелочам, не смачивается водой, но обладает способностью прилипать к некоторым жировым смесям.

Алмазы в природе встречаются как в виде хорошо выраженных отдельных кристаллов, так и поликристаллических агрегатов. Правильно образованные кристаллы имеют вид многогранников с плоскими гранями: октаэдр, ромбододекаэдр, куб и комбинации этих форм. Очень часто на гранях алмазов имеются многочисленные ступени роста и растворения; если они неразличимы глазом, грани кажутся искривленными, сферическими, в форме октаэдроида, гексаэдроида, кубоида и их комбинаций. Различная форма кристаллов обусловлена их внутренним строением, наличием и характером распределения дефектов, а также физико-химическим взаимодействием с окружающей кристалл средой.

Среди поликристаллических образований выделяются - баллас, карбонадо и борт.

Баллас - это сферолитовые образования с радиально-лучистым строением. Карбонадо - скрытокристаллические агрегаты с размером отдельных кристаллов 0,5-50 мкм. Борт - яснозернистые агрегаты. Балласы и особенно карбонадо имеют самую высокую твердость из всех видов алмазов.

Рис.1 Строение кристаллической решетки алмаза.


Рис.2 Строение кристаллической решетки алмаза.

1.2 Общая характеристика графита

Графит - серо-черное кристаллическое вещество с металлическим блеском, жирное на ощупь, по твердости уступает даже бумаге.

Структура графита слоистая, внутри слоя атомы связаны смешанными ионно-ковалентными связями, а между слоями - существенно металлическими связями.

Атомы углерода в кристаллах графита находятся в sp2-гибридизации. Углы между направлениями связей равны 120*. В результате образуется сетка, состоящая из правильных шестиугольников.

При нагревании без доступа воздуха графит не претерпевает никакого изменения до 3700 *С. При указанной температуре он выгоняется, не плавясь.

Кристаллы графита - это, как правило, тонкие пластинки.

В связи с низкой твердостью и весьма совершенной спайностью графит легко оставляет след на бумаге, жирный на ощупь. Эти свойства графита обусловлены слабыми связями между атомными слоями. Прочностные характеристики этих связей характеризуют низкая удельная теплоемкость графита и его высокая температура плавления. Благодаря этому, графит обладает чрезвычайно высокой огнеупорностью. Кроме того, он хорошо проводит электричество и тепло, устойчив при воздействии многих кислот и других химических реагентов, легко смешивается с другими веществами, отличается малым коэффициентом трения, высокой смазывающей и кроющей способностью. Все это привело к уникальному сочетанию в одном минерале важных свойств. Поэтому графит широко используется в промышленности.

Содержание углерода в минеральном агрегате и структура графита являются главными признаками, определяющими качество. Графитом часто называют материал, который, как правило, не является не только монокристаллическим, но и мономинеральным. В основном имеют в виду агрегатные формы графитового вещества, графитовые и графитсодержащие породы и продукты обогащения. В них, кроме графита, всегда присутствуют примеси (силикаты, кварц, пирит и др.). Свойства таких графитовых материалов зависят не только от содержания графитового углерода, но и от величины, формы и взаимных отношений кристаллов графита т.е. от текстурно-структурных признаков используемого материала. Поэтому для оценки свойств графитовых материалов необходимо учитывать как особенности кристаллической структуры графита, так и текстурно-структурные особенности других их составляющих.

Рис.3. Строение кристаллической решетки графита.


Рис.4. Вкрапленники графита в кальците.


2. Промышленные типы месторождений алмаза и графита

Месторождения алмазов подразделяются на россыпные и коренные, среди которых выделяются типы и подтипы, различающиеся по условиям залегания, формам рудных тел, концентрациям, качеству и запасам алмазов, условиям добычи и обогащения.

Коренные месторождения алмазов кимберлитового типа во всем мире являются основными объектами эксплуатации. Из них добывается около 80% природных алмазов. По запасам алмазов и размерам они разделяются на уникальные, крупные, средние и мелкие. С наибольшей рентабельностью отрабатываются верхние горизонты выходящих на дневную поверхность уникальных и крупных месторождений. В них сосредоточены основные запасы и прогнозные ресурсы алмазов отдельных алмазоносных кимберлитовых полей. Кимберлиты – это «вулканические жерла», заполненные брекчией. Брекчия состоит из обломков и ксенолитов, окружающих и осевших сверху пород, из обломков пород, вынесенных с глубин 45-90 км и более. Цементом является вулканический материал, туфы щелочно-ультроосновного состава, так называемые кимберлиты и лампроиты. Кимберлитовые трубки располагаются на платформах, лампроитовые – в их складчатом обрамлении. Время образования трубок разное – от архея до кайнозоя, а возраст алмазов, даже самых молодых из них, составляет около 2-3 млрд. лет. Образование трубок связано с прорывом вверх по узким каналам под большим давлением, на глубине свыше 80 км, при температуре около 1000*щелочно-ультроосновных расплавов. Большинство хорошо изученных кимберлитовых тел имеет сложное строение; в наиболее упрощенном случае в строении трубки участвуют две основные разновидности пород, образовавшихся в ходе двух последовательных фаз внедрения: брекчия (1-й этап) и массивный «крупнопорфировый» кимберлит (2-й этап). В строении некоторых кимберлитовых трубок выявлены также кимберлитовые дайки и жилы, связанные с трубками. Обнаружены слепые тела, образованные порциями кимберлитовой магмы, не доходившими до дневной поверхности. Месторождения, связанные с дайками и жилами кимберлитов, как правило, относятся к категории мелких, реже средних по запасам алмазов Во многих случаях прорыв вверх достигал палео-поверхности, но многие трубки взрыва могут быть «слепыми» и до сих пор не вскрыты эрозией, т.е. залегают где-то на глубине. Но и на поверхности Земли есть места, где возникают давления вполне достаточные для образования алмаза. Это места удара метеоритов, где алмаз встречается не только в Земле, но и в ряде самих метеоритов.

Скорость движения прорывающейся магмы, вероятно, могла быть очень большой, около 800 км/ч, магма отрывала и выносила вверх обломки разного состава. Если в них содержались алмазы, трубка становилась алмазоносной. Сами же алмазы являются наиболее стабильной полиморфной модификацией углерода в глубинных зонах Земли. (А.В. Уханов.)

Рис. 5. Строение кимберлитовой трубки.

Лампроитовый тип месторождений алмазов открыт сравнительно недавно (1976 г.) в Западной Австралии, где эксплуатируется крупное месторождение Аргайл. По своему строению лампроитовые месторождения в целом аналогичны кимберлитовым. Судя по данным разведки месторождения Аргайл, трубки лампроитов несколько быстрее выклиниваются на глубину, где они переходят в дайки. Система отработки этих месторождений и технология обогащения такие же, как и на кимберлитовых объектах.

Кимберлит-лампроитовый типпредставлен месторождением алмазов в Архангельской области, где содержание минералов-индикаторов существенно ниже, чем в «классических» кимберлитах, подавляющее большинство алмазов представлено кривогранными формами.

Кольцевые импактные структуры размером от первых до сотни км связаны со сверхмощными взрывными процессам, источник которых имел, по мнению разных исследователей, либо внеземной (падение крупных небесных тел), либо эндогенный характер. В России разведано одно месторождение этого типа - Попигайское на восточном склоне Анабарского кристаллического массива. По запасам руды и содержанием алмазов месторождение превышает в сотни раз самые крупные в кимберлитах. Однако алмазы в импактных месторождениях заключены в крепкие плотные эффузивного облика породы и представлены исключительно техническими сортами с примесью лонсдейлита (полиморфная модификация углерода, встречается в виде пластинок, чередующихся с графитом, но расположенных перпендикулярно его плоскости).

Метаморфогенный тип также представлен пока одним месторождением на территории Казахстана, где алмазы установлены в биотитовых гнейсах, биотит-кварцевых, гранат-пироксеновых и пироксен-карбонатных породах. По запасам и содержанию алмазов оно в десятки раз превышает самые крупные высокоалмазоносные кимберлитовые трубки. Алмазы имеют крайне мелкий размер кристаллов, а ювелирных и высококачественных технических сортов пока не обнаружено.

Россыпные месторождения алмаза представлены пятью основными типами.

Аллювиальные россыпи (речных долин) являются ведущими по масштабу добычи алмазов из россыпей. Крупные месторождения редки и образуются обычно за счет размыва нескольких коренных источников или промежуточных коллекторов площадного типа. Аллювиальные россыпи имеют двухчленное строение: верхняя пойменная фация аллювия представлена весьма слабоалмазоносными гравийно-песчано-глинистыми и илистыми отложениями («торф»), нижняя русловая фация сложена продуктивными грубообломочными галечниками («пески»).

Россыпи делювиально-пролювиального типа формируются на склонах и в логах возле коренных источников и относятся к мелким и средним по масштабу.

Прибрежно-морские россыпи подразделяются на подводные, пляжевые и береговые террасы. Зона таких россыпей в юго-западной Африке простираются на многие сотни км при ширине от 5 до 20 км.

Россыпи остальных промышленных типов существенной роли в добыче алмазов не играют.

Россыпные месторождения различных типов по глубине залегания подразделяются на мелкозалегающие и глубокозалегающие. По степени удаленности от коренного источника выделяются россыпи ближнего и дальнего сноса; первые формируются вблизи от коренного источника, вторые - на удалении десятков км в благоприятных геолого-структурных условиях.

Промышленные типы месторождений графита.

Графит образовался из органических соединений в результате метаморфизации осадочных пород.

Среди месторождений графита выделяются по геологической обстановке их нахождения четыре группы промышленных типов месторождений.

По величине запасов месторождения графита подразделяют (млн. т) на: крупные - больше 1, средние - 0,5-1, мелкие - до 0,5.

Наиболее широко распространенными и более крупными по своим запасам являются месторождения тайгинского, мадагаскарского, ногинского, мексиканского типов.

Графитовые месторождения цейлонского, ботогольского типов менее распространены, реже имеют крупные запасы, но отличаются высоким содержанием графита в руде и более ценными качествами.


3. Природные и технологические типы алмазосодержащих руд

Природные типы руд – алмазоносные кимберлиты и алмазоносные лампроиты, которые подразделяют исходя из соотношений собственно кимберлита и ксеногенного материала и струкрурно-текстурных особенностей, на алмазоносные массивные кимберлиты, кимберлитовые брекчии, туфобрекчии, ксенотуфобрекчии, туфы и туфогенно-осадочные породы.

Единая технологическая классификация алмазосодержащих руд отсутствует. При технико-экономической типизации руд выделяют два основных технологических типа: брекчии с содержанием глинистой составляющей менее 20% и брекчии с содержанием глинистой составляющей более 20%. При обработке этих руд отличаются как технологические схемы, так и себестоимость отработки.

В целом, как показывает практика, технологическая классификация руд разрабатывается в каждом конкретном случае самостоятельно в ходе разведки и последующей эксплуатации месторождения. Нередко, когда кимберлитовое тело сложено породами разных фаз внедрения, четко отличающимися структурно-текстурными признаками и уровнем алмазоносности, природные типы руд практически совпадают с технологическими. Главный фактор – содержание алмазов. Так, в трубке Дальняя (Саха-Якутия) два выделяемых здесь природных типа – кимберлитовые брекчии и массивные кимберлиты – различаются по уровню алмазоносности на порядок и являются одновременно технологическими типами. Однако, например, в ходе эксплуатации трубки «Мир», выделено шесть технологических типов руд, отличающихся нюансами структуры и алмазоносности, тогда как фаз внедрения было только две.

Технологические типы алмазоносных песков выделяют, исходя из их валунистости, глинистости, промывитости и т.д.

Природные и технологические типы графитовых руд.

Типизация графитовых руд проводится по текстурно-структурным признакам. Графиты делятся на явно – и скрытокристаллические. Среди явнокристаллических выделяют плотнокристаллические и чешуйчатые разновидности. Плотнокристаллические графиты подразделяют на крупнокристаллические со средним размером кристаллов более 50 мкм и мелкокристаллические.

По величине чешуек, их диаметру, чешуйчатые графиты длятся на крупночешуйчатые (100-500 мкм) и мелкочешуйчатые (1-100 мкм).

Скрытокристаллические графиты сложены кристаллами, имеющими величину менее 1 мкм. Выделяют плотные и тонкодисперсные или распыленные разности. В последних кристаллики графита рассеяны во вмещающей породе. В плотных разностях кристаллики графита составляют основную массу графитовой породы. Промышленное значение имеют только плотные разности скрытокристаллического графита.

Кристаллический кусковой – 92-95;

Кристаллический крупночешуйчатый – 85-90;

Кристаллический среднечешуйчатый – 85-90;

Кристаллический мелкочешуйчатый – 80-90;

Кристаллические порошки с размером до 0,074 мм и содержанием графитного углерода 80-99.

Разведка графитовых месторождений других промышленных типов, имеющих залежи неправильной формы или линзовидные и штокообразные, также проводится скважинами колонкового бурения в сочетании с горными выработками.

При оценке и разведке графитовых месторождений с применением бурения устанавливают отсутствие избирательного истирания керна, которое возможно при неравномерном распределении концентраций графита, в виде обогащенных участков, представленных сетью прожилков, линз, гнезд и т.п. С этой целью следует контролировать содержание графита в промывочных буровых растворах и шламе. При необходимости проходят контрольные выработки с валовым опробованием.


4. Разработка месторождений алмазов

Коренные месторождения алмазов, разработанные открытым способом, либо комбинированным:

Верхние горизонты – открытым, а более глубокие – подземным. В России алмазы добывают только открытым способом.

Открытый способ разработки трубок примерно одинаков на всех месторождениях. Рассмотрим его на примере трубки Фиши (ЮАР).

Трубка имеет овальную форму горизонтального сечения и почти вертикальные контакты с вмещающими породами. Зона выветривания кимберлитов распространяется на глубину 60 м. В составе кимберлитов значительный объем занимает вторичная фаза - сапонит, разбухающий минерал, впитывающий большое количество воды. По этой причине руда трубки гигроскопична и при увлажнении быстро теряет прочностные свойства, поэтому применяют специальные методы изоляции поверхности кимберлита от воды, а при бурении скважин используют сухое пылеулавливание.

Разработка трубки открытым способом началась в 1966 г., а к 1990 г. глубина карьера достигла 423 м при среднем годовом понижении 18-20 м. Было добыто свыше 97 млн т кимберлита (около 5 млн т в год) и удалено в отвалы 55 млн т пустой породы. Площадь карьера на поверхности 550 тыс.м2. Такой способ отработки обеспечил устойчивую работу рудника и хорошие технико-экономические показатели: низкий коэффициент вскрыши, планомерный переход на подземный способ. Во вмещающих породах пройден наклонный ствол протяженностью 1300 м под углом 12° от поверхности до выхода в карьер на глубине 280 м. В нем разместились конвейер для транспортировки руды на обогатительную фабрику и подземный дробильный комплекс, что позволило резко сократить количество работающих самосвалов.

При подземном способе используют несколько систем подземной отработки алмазоносных трубок.

Камерная система предусматривает проходку 8-метровых камер высотой 12м, разделенных между собой временными 8-метровыми целиками, на каждом рабочем горизонте вдоль короткой оси трубки. Кимберлит, вынимаемый из камер и из целиков вышележащего горизонта, под действием веса обрушенных пород попадает на подошву откаточной выработки, где грузится в вагонетки и откатывается к расположенному во вмещающих породах рудоспуску, по которому кимберлит подают на главный откаточный горизонт.

Метод щелевой разработки использован на трубке Премьер (ЮАР). По мере разработки трубки на каждом рабочем горизонте параллельно щели проходили главные штреки с интервалом, равным половине расстояния от щели до границ рудного тела. На глубине 270 м руду выпускали из рудоспусков в вагонетки и транспортировали по откаточным штрекам, Далее руду подавали в дробилку, измельчали и транспортировали на поверхность. Наиболее прогрессивный метод разработки – этажное самообрушение; он обеспечивает высокую производительность (до 5 млн т кимберлита в год) при низкой себестоимости и относительно малом применении ручного труда. При этой системе разрушение кимберлита происходит под действием силы тяжести, число рабочих горизонтов и погрузочных пунктов резко сокращается. Сущность системы состоит в том, что из откаточного штрека, ориентированного поперек трубки, проходят скреперные штреки на расстоянии 14 м друг от друга, в которых с интервалами 3-5 м на обеих сторонах в шахматном порядке располагаются квадратные ниши размером 1-2 м. Из ниш проходят восстающие в форме воронки, поднимающейся до высоты 7,6 м над уровнем подошвы. Кимберлитовые блоки затем полностью подрезаются, и слои мощностью 18 м вырабатываются так, что кимберлит разламывается и обрушается в конусные восстающие. В результате на всей площади трубки образуется компенсационная щель высотой 2,2 м. После этого над компенсационным пространством остается не имеющий опоры массив кимберлита, который под действием собственного веса постепенно обрушивается на выпускные воронки. По мере обрушения кимберлита производится его частичный выпуск с целью восстановления компенсационного пространства, поэтому уровень обрушаемого кимберлита постоянно поднимается до тех пор, пока не достигнет пород вышележащего горизонта. После этого выпуск руды продолжается с определенной скоростью, пока в скреперах не появится пустая порода. Отработка данного горизонта на этом заканчивается, после чего приступают к отработке нижележащего.

Россыпные месторождения с глубиной залегания до 40-45 м обрабатываются открытым способом. В Республике Саха (Якутия) добычу ведут в летний период бульдозерно-гидравлическим способом. Пески, поданные бульдозерами, промывают на решётке гидровашгерда с размером ячейки 30-50 мм. Надрешетный материал струей воды удаляется, а подрешётная пульпа землесосами по трубам подается на расстояние 20,-2,5 км на сезонную стационарную обогатительную фабрику. Из долины протяженных россыпей алмазы добывают дражным способом. Драги двигают снизу вверх по долине реки поперечными или продольными ходами. После исчерпания основных запасов драги повторно продвигают уже сверху вниз со смещением ходов по отношению к первичным. Иногда ходы направлены вкрест первичных.

Рис.6. Кимберлитовая трубка во время разработки.


Разработка месторождений графитовых руд.

Разработка графитовых руд ведется открытым и подземным способами. Среди трех эксплуатируемых месторождений графита в России два (Ногинское, Ботогольское) разрабатываются подземным способом и одно (Тайгинское) – открытым.

Размеры карьера при открытой разработке на Тайгинском месторождении кристаллического графита имеют длину около 3 км, ширину 200-250 м и глубину более 50 м. Потери при добыче составляют около 1%, разубоживание незначительное.

В США открытая добыча графитовой руды ведется с применением буровзрывных работ с последующей транспортировкой руды автотранспортом на обогатительные фабрики.

Оригинальная система разработки графитовых месторождений применена в республике Мадагаскар. Открытым способом обрабатываются преимущественно верхние, выветрелые графитовые руды до глубины 30-40 м. Работы ведутся террасами со спуском руды на нижние горизонты, откуда руда поступает на обогатительную фабрику.

Ногинское графитовое месторождение, разрабатываемое подземным способом (штольней и шахтой), характеризуется разубоживанием 2,8 %, влажностью руды 4,5%, потерями 17,8%.

Ботогольское месторождение высококачественного плотнокристаллического графита разрабатывается штольневым способом. Добыча ведется горизонтальными слоями снизу вверх, с закладкой очистного пространства. Потери при добыче составляют около 8%.


5. Области применения алмазов

Основные области применения природных алмазов.

Ювелирные алмазы. Главная область применения алмазов в стоимостном выражении – огранка в бриллианты.

Технические алмазы. К техническим относятся темноцветные кристаллы, имеющие трещины и другие дефекты, а также различные осколки, двойники, сростки и т.д., из которых невозможно изготовить ограненный кристалл. В зависимости от качества и назначения технические алмазы можно условно разделить на следующие группы:

Алмазы, подвергающиеся обработке с целью получения зерен определенной геометрической формы. К ним относятся алмазы, предназначенные для изготовления резцов, сверл, наконечников, стеклорезов, подшипников и др.;

Кристаллы алмазов, используемые в необработанном виде в буровых коронках, алмазно-металлических карандашах и др.;

Абразивные алмазы – в основном мелкие кристаллы, имеющие значительные дефекты и пригодные только для измельчения в порошок.

Алмазные порошки незаменимы при обработке сверхминиатюрных деталей, таких как часовые камни из рубина, подшипники из топаза, берилла и сапфира, твердость которых приближается к твердости корунда. Только применение алмазных порошков обеспечивает высокую чистоту обрабатываемых микроповерхностей, от чего зависит точность работы микродеталей в аппаратах и приборах.

Инструменты из алмазных порошков. Для резания твердых пород, сплавов и других твердых материалов промышленностью выпускаются алмазные диски и различные алмазные пилы. Распространены абразивные алмазные инструменты в оправке, которые широко применяются в металлообрабатывающей промышленности для правки шлифовальных кругов. Используются также алмазно-металлические карандаши, представляющие собой прессованные вставки из алмазного порошка твердого сплава.

Инструменты из монокристаллов алмаза. Резцы, иглы, стеклорезы, фильеры (пластинчатые алмазы с просверленными в них тончайшими отверстиями) и другой инструмент изготавливаются из отдельных кристаллов алмаза или их частей. Алмазные иглы – это кристаллы алмазов с естественной острой вершиной или осколки с острым ребром, закрепленные в металлических стержнях. Алмазные иглы широко применяются для изготовления метчиков на резьбошлифовальных станках. Алмазные иглы конической формы со сферической головкой используют в профилометрах и профилографах, которые служат для измерения мельчайших неровностей и чистоты поверхности различных деталей. Широко применяются алмазы для изготовления фильер при производстве проволоки из твердых материалов, особенно малых диаметров для нужд электроники.

Алмазный породоразрушающий инструмент. Применение алмазов для армирования буровых коронок позволило повысить производительность буровых установок в 1,5-2 раза по сравнению с неалмазным бурением.

Другие области применения алмазов. Алмаз – прекрасный оптический материал для всевозможного рода кювет и окошек, способный выдерживать высокие давления и натиск веществ любой степени агрессивности и быть одновременно прозрачным в широком диапазоне длин волн.

Алмазная подложка полупроводниковых схем, обеспечивая их прекрасную изоляцию, отводит тепло в несколько раз быстрее, чем, например, медь, существенно повышая эффективность работы ответственных узлов электронных схем. Возможность с помощью алмазов считать ядерные частицы в условиях агрессивных сред и высоких механических нагрузок, алмаз используется в специальных счетчиках.

Структура потребления технических алмазов высокоразвитыми странами следующая, (%):

Шлифование, заточка инструментов и деталей машин из твердых сплавов – 60-70;

Оправка шлифовальных кругов – 10-12;

Бурение скважин – 10;

Волочение проволоки – 10;

Резка и шлифование деталей и изделий из стекла, керамики, мрамора, сверление и доводка твердосплавных деталей, обработка часовых и ювелирных изделий – 10-12.

Области применения графита.

Руды почти всех графитовых месторождений редко могут быть в сыром виде использованы потребителями. Практически все они подвергаются той или иной предварительной обработке с целью превращения руды в готовую продукцию.

Технологическая классификация графитовых руд совпадает с классификацией природных типов.

Явнокристаллические руды перерабатываются преимущественно по флотационным схемам благодаря хорошей флотируемости графита.

Скрытокристаллическое графитовое сырьё представлено тонкодисперсными минералами в весьма сложном прорастании с пустыми породами. Поэтому такие типы графитовых руд почти не поддаются механическому обогащению. К ним применяются главным образом рудоразработка и в особых случаях, методы химического, термического или других способов обработки. В связи с тем, что эти процессы являются дорогими, он используются редко.

Основными показателями, по которым оценивается графитовая продукция, являются: текстурно-структурные, содержание углерода, золы, влаги, летучих компонентов, вредных примесей (железо, сера, медь, и др.), гранулометрический состав.

В литейном производстве предпочтение отдаётся скрытокристаллическому графиту, поскольку для этого производства важна дисперсность порошка, обеспечивающая гладкую поверхность литейных форм и облегчающая удаление из них отливок после охлаждения.

Высококачественные явнокристаллические графиты широко используются при специальном литье стали.

Тигельный графит представлен тремя марками. Зональность их не превышает соответственно 7; 8,5 и 10%, массовая доля железа в пересчете на Fe2O3 для всех марок не более 1,6%, летучих веществ – менее 1,5%; влаги – не более 1%.

Для производства графито-керамических плавильных тиглей и огнеупоров используется высококачественный явнокристаллический графит.

В соответствии с требованиями к смазочному графиту продукция выпускается в виде нескольких марок, каждая из которых имеет своё направление применения и характеризуется рядом показателей. Общими для всех марок являются лишь показатели величины концентрации водородных ионов водной вытяжки и влажности.

Производство карандашей, как и электроугольное, предъявляет наиболее высокие требования к качеству графита. В мировой практике для лучших сортов карандашей употребляется смесь цейлонского и другого кристаллического или скрытокристаллического графита, который чаще всего применяется для производства обыкновенных сортов карандашей.

В производстве активных масс щелочных аккумуляторов применяется явнокристаллический крупночешуйчатый графит («серебристый»), получаемый путём флотации руд Тайгинского и Завальевского месторождений.

В электроугольной промышленности применяют графит трех типов – природный мелко- и скрытокристаллический и искусственный. Искусственный графит получил широкое распространение вследствие его высокой чистоты и постоянства состава.

В производстве смазок в качестве твердых веществ широко используется природный кристаллический графит и вместе с ним графит искусственный. Для этого производства требуется графит обычно высокой чистоты и очень тонкого помола, иногда коллоидной размерности. Смазки чаще всего представляют собой водные или масляные суспензии из естественного кристаллического и искусственного графита.

Ряд марок графита не допускает засоряющих примесей, в том числе и графита других месторождений. К этим маркам относятся тигельный, элементный и электроугольный графит.


Заключение

Исследовав две полиморфные модификации углерода: алмаз и графит, я пришла к тому, что несмотря на одинаковый химический состав, полиморфы имеют разное строение кристаллической решетки, а следовательно и разные свойства и происхождение.

Алмаз - бесцветное, прозрачное кристаллическое вещество с исключительной твердостью – 10 и алмазным блеском. Графит - серо-черное кристаллическое вещество с металлическим блеском, жирное на ощупь, по твердости уступает даже бумаге - 1.

Алмазы в природе встречаются в виде хорошо выраженных отдельных кристаллов. Кристаллы графита - это, как правило, тонкие пластинки.

Происхождение алмазов магматическое, графита – метаморфическое.

Алмазы используются практически во всех отраслях промышленности: электротехническая, радиоэлектронная, приборостроительная, при буровых работах.

Графит же используют для производства графито-керамических плавильных тиглей и огнеупоров, в качестве смазок, производство карандашей, электроугольная промышленность.

В бесчисленных учебниках приведены диаграммы равновесия алмаз-графит и написано, что алмаз возникает из графита. Но почему-то никто не задался вопросом: откуда же в мантии графит?.. Ведь он там нестабилен, и его называют "запрещенным" минералом для условий мантии. Иное дело карбиды. Они здесь устойчивы: карбиды железа, фосфора, кремния, азота, водорода. Карбид водорода - это газ, обычный метан, он подвижен и легко концентрируется в глубинном флюиде.

В свое время геологи не придали значения замечательному открытию советского физика Б. Дерягина, который еще в 1969 году синтезировал алмаз из метана и, что очень важно, при давлении даже ниже атмосферного. Это открытие уже тогда должно было бы в корне изменить существовавшие представления об алмазе как о минерале, кристаллизующемся обязательно из расплавов и при высоких давлениях. Данные Б. Дерягина позволили мне рассмотреть возможность кристаллизации алмаза из флюида, газовой смеси в системе С-Н-О.

Оказывается, что в таком флюиде кислород при сверхвысоком давлении мантии теряет свои окислительные свойства и не окисляет даже водород. Но при подъеме газа вверх, при образовании кимберлитовой трубки, давление падает. Достаточно уменьшить давление в 10 раз - от 50 до 5 килобар, чтобы активность кислорода возросла в миллион раз. И тогда он мгновенно соединяется с водородом и метаном. Проще говоря, газ самовоспламеняется - в подземной трубе вспыхивает яростный огонь.

Последствия такого подземного "пожара" зависят от соотношения углерода, водорода и кислорода во флюиде. Если кислорода не слишком много, он вырвет из молекулы метана (СН4) лишь водород. Возникшие при этом пары воды будут поглощены минеральной пылью и образуют серпентинит -характернейший минерал кимберлитов. Углерод, оставшись "одиноким", при давлении в тысячи атмосфер и температуре около 1000 °С замкнется ненасыщенными валентными связями "сам на себя" и образует гигантскую молекулу чистого углерода - алмаз! На практике такая благоприятная комбинация компонентов в газовой смеси встречается редко: лишь пять процентов кимберлитовых трубок бывают алмазоносными.

Чаще случается так, что кислорода или слишком много для образования алмаза, или недостаточно. В первом случае углерод сгорит и превратится в газы - оксиды: СО или СО2. Тогда возникают безрудные кимберлиты. Они отличаются повышенной магнитностью, потому что в них появился оксид железа -магнетит. Кислорода было много, и он "вырвал" железо из состава силикатов. При дефиците кислорода или метана возникнут лишь пары воды, и они будут поглощены серпентинитом. Выходит, что алмаз возникает как продукт самопроизвольного подземного горения углеродистого флюида. Алмазы - аналоги золы или сажи, осевшей в "дымоходах" мантии! (А. Портнов – доктор геолого-минералогических наук, профессор).


Список используемой литературы

1. Углерод и его соединения – Киев, «Наукова Думка» 1978.

2. Булах А.Г. Общая минералогия. 1999.

3. Сарасовский. Образовательный журнал. Том 6, 2000.№ 5.

4. Дядин Ю.А. Графит и его соединения включения.

5. А. Портнов. «Алмаз – сажа из преисподней».

6. ЗАО «Геоинформмарн». Москва 1997. Минеральное сырьё. Графит. Алмаз.

7. Издательство«Советская энциклопедия». Москва. 1972.

Не каждый знает, но алмаз и графит - две формы одного и того же вещества. Эти минералы полностью отличаются друг от друга по твердости и по характеристикам преломления и отражения света. Причем отличия весьма существенные. Алмаз - наиболее твердый в мире минерал, по шкале Мооса он представляет собой эталон - 10, тогда как твердость графита по этой шкале - всего 2. Таким образом, алмаз и графит одновременно самые похожие и непохожие вещества в мире.

Кристаллические решетки алмаза и графита

Каждое из них происходит из углерода, который, в свою очередь, является самым распространенным элементом биосферы. Он присутствует как в атмосфере, так и в воде, в биологических объектах. В земле он представлен в составе нефти, газа, торфа и так далее. Встречается и в качестве залежей графита и алмаза.

Больше всего углерода в организмах. Боле того, ни один из них не может без него обойтись. А происхождение этого минерала в остальных частях планеты как раз и объясняется нахождением когда-то там живых организмов.

Много споров сопровождает вопрос, откуда взялся графит и алмазы, ведь недостаточно, чтобы был один углерод, необходимо также, чтобы выполнялись определенные условия, при которых этот химический элемент принимал новую структуру. Считается, что происхождение графита метаморфическое, а алмазов - магматическое. Это означает, что образование алмазов на планете сопровождают сложные физические процессы, скорее всего, в глубинных слоях земли при горении и взрывах в присутствии кислорода. Ученые предполагают, что в этот процесс также замешан метан, но точно никто не знает.

Отличия между графитом и алмазом

Основное отличие - это строение алмаза и графита. Алмаз представляет собой минерал, форму углерода. Характеризуется метастабильностью, что означает, что он способен оставаться в неизменно вид бесконечно долго. Алмаз переходит в графит при некоторых специфических условиях, например, при высокой температуре в вакууме.

Графит также является модификацией углерода. Его структура делает минерал очень слоистым, поэтому самое распространенное его применение - изготовления грифеля для карандаша.

Явление, при котором вещества, образованные одним и тем же химическим элементом, имеют разные физические свойства, называется аллотропией. Существуют и другие подобные вещества, однако эти два минерала имеют наибольшую разницу между собой. Решающую роль в этом играют особенности строения кристаллической структуры каждого из минералов.

Алмаз имеет невероятно прочную связь между атомами, что обусловлено их плотным расположением. Смежные атомы ячейки имеют форму куба, где частицы расположены на углах, гранях и внутри их. Это тетраэдрический тип строения. Такая геометрия атомов обеспечивает максимально плотную их организацию. Поэтому твердость алмаза такая высокая.

Низкий атомный номер углерода, показывающий, что атом имеет небольшую атомную массу, а соответственно и радиус, делает его самым твердым веществом на планете. Вместе с тем это совершенно не означает прочность. Расколоть алмаз довольно легко, достаточно его ударить. Такое строение объясняет высокий коэффициент теплопроводности и светопреломления алмаза.

Структура графита совершенно иная. На атомарном уровне она представляет собой ряд пластов, расположенных в разных плоскостях. Каждый из этих пластов представляет собой шестиугольники, которые примыкают друг к другу подобно сотам. При этом сильной связью обладают только атомы, расположенные в пределах каждого слоя, а между слоями связь хрупкая, они практически независимы друг от друга.

След от карандаша - это как раз и есть отделяемые слои графита. Из-за особенности своего строения графит имеет невзрачный вид, поглощает свет, обладает электропроводностью и металлическим блеском.

Получение алмаза из графита

Долгое время получить алмаз было технологически сложно, но к сегодняшнему дню эта не такая и трудная задача. Основной проблемой является повторение процессов в лаборатории в короткий промежуток времени, которые в природе проходят за миллионы лет. Ученые доказали, что условиями перехода алмаза из графита являлась высокая температура и давление.

Впервые такие условия были получены с помощью взрыва. Взрыв является химическим процессом, который представляет собой горение при высокой температуре и скорости. После этого собрали остатки графита, и оказалось, что внутри его образовались маленькие алмазы. То есть превращение произошло только фрагментарно. Причиной этого является разброс параметров внутри самого взрыва. Там, где условия были достаточными для такого превращения, оно и произошло.

Натуральный необработанный алмаз

Такие параметры сделали взрывы малоперспективными для получения алмаза. Однако опыты не прекратились, на протяжении длительного времени ученые продолжали проводить их, чтобы каким-то образом получить этот минерал. Более-менее стабильный результат получился, когда графит попытались нагреть импульсно до температуры в две тысячи градусов. В этом случае удалось получить алмазы приличных размеров.

Однако такие опыты дали еще один неожиданный результат. После превращения графита в алмаз происходил обратный переход алмаза в графит при уменьшении давления, то есть происходила графитизация. Таким образом, получение стабильного результата только с помощью одного давления достичь не удавалось. Тогда вместе с увеличением давления начали нагревать графит. Спустя некоторое время, удалось вычислить диапазон давлений и температур, при которых кристаллы алмаза можно было бы получать. Однако эти методы все еще не позволяли получить минерал ювелирного качества.

Для того чтобы получить камни, пригодные для создания украшений, начали выращивать алмазы с помощью применения затравки. В качестве ее использовали готовый кристалл алмаза, который нагревали до температуры 1500 градусов, что стимулировало сначала быстрый, а потом медленный рост. Однако применение метода в промышленных масштабах было нерентабельным. Потом начали в качестве подкормки использовать метан, который при таких условия распадался на углерод и водород. Как раз этот углерод и выступал, если можно так сказать, кормом алмаза, позволяющим ему расти намного быстрее.

Таким образом, сегодня этот метод используется для создания искусственных алмазов. И хотя он и является рентабельным, стоимость таких целых искусственных минералов остается высокой, что делает их не сильно популярными по сравнению с заменителями бриллиантов.

Месторождения минералов

Алмазы зарождаются на глубине 100 км и при температуре 1300 градусов. Кимберлитовая магма, которая образует кимберлитовые трубки, вступает в действие в результате взрывов. Именно такие трубки и представляют собой коренные месторождения алмазов. Впервые подобная трубка была открыта в африканской провинции Кимберли, откуда и пошло ее название.

Наиболее известные месторождения находятся в Индии, России и Южной Африке. На коренные месторождения приходится 80 % всех добываемых алмазов.

Чтобы найти алмаз в природе, используют рентген. Большинство из камней, которые находят, непригодны для ювелирного производства, так как обладают значительным количеством дефектов, в том числе трещинами, включениями, посторонними оттенками флуоресценцией и так далее. Поэтому их применение техническое. Такие камни делят на три категории:

  • борт - камни с зональной структурой;
  • баллас - камни, которые обладают круглой или грушевидной формой;
  • карбонадо - черный алмаз.

Алмазы большого размера с выдающимися характеристиками, как правило, получают свое название. Кроме того, высокая стоимость камня делает его желанным для многих, что гарантирует «кровавую историю».

Графит образуется в результате изменения осадочных пород. В Мексике и на Мадагаскаре можно встретить руду с графитом низкого качества. Наиболее известные месторождения - в Краснодаре и на Украине.

Применение

Применение как алмаза, так и графита намного шире, чем кажется. Для алмаза можно выделить несколько сфер использования.

В ювелирной промышленности алмазы используют только в огранке, как известно, они носят название бриллиантов. Всего 20 % всех добытых камней пригодны для украшений, а минералов высокого качества и куда меньше.

Бриллианты - самые дорогие в мире камни. По стоимости только некоторые экземпляры рубинов могут сравниться с ними. На стоимость минералов влияют огранка, цвет, оттенок и чистота. Обычно некоторые из этих характеристик невооруженным глазом являются незаметными, однако выявляются при экспертизе.

Использование бриллиантов в украшениях очень распространено. Часто они выступаю как единственный камень или дополняют высококачественные сапфиры, рубины, изумруды. Наиболее частое применение камней - кольца для помолвки.

В технической сфере обычно берут второсортное сырье, с дефектами или с различными оттенками. Технические алмазы разделяются на несколько подкатегорий.

  • алмазы определенной формы, которая годится для изготовления подшипников, наконечников сверл и так далее;
  • необработанные камни;
  • камушки с дефектами, применяемые только для изготовления алмазной крошки и порошка.

Последние применяются либо в очень маленьких деталях, либо в качестве напыления для изготовления режущего и шлифовального инструмента.

В электронике применяются иглы, которые являют собой необработанные кристаллы, имеющие от природы острую вершину, или осколки с такой же вершиной. Буровые установки в промышленности также содержат алмазы. Прослойки из этого минерала используются в микросхемах, счетчиках и так далее, происходит это благодаря высокому коэффициенту теплопроводности и сопротивлению.

Около 60 % всех технических алмазов используется в инструментах. Остальные 40 % в равных количествах:

  • при бурении скважин;
  • переработке;
  • в мелких деталях ювелирных изделий;
  • в шлифовальных кругах.

В чистом виде графит не используется. Его, как правило, обрабатывают. Графит высочайшего качества применяется в виде стержня для карандаша. Наиболее широкое применение графит находит в литье. Здесь он применяется для обеспечения гладкой поверхности стали. Для этого он используется в необработанном виде.

В электроугольной промышленности используют не только природного происхождения минерал, но и созданный. Последний имеет высокую однородность по качеству и чистоте. Высокая проводимость тока делает его также широко используемым для изготовления электродов в приборах. Кроме того, он применяется в качестве щеток для двигателя. В металлургии графит используют как смазочный материал.

Графитовые стержни за свою способность замедлять нейтроны раньше широко использовались при создании атомных реакторов. В частности, именно боровые стержни с графитовыми наконечниками выступали в качестве стержней управления-защиты на Чернобыльской АЭС. Одна из проблем, которая после привела к аварии, была в том, что для гашения цепной реакции нужно было нейтроны поглощать, за что отвечал бор, а не замедлять. Поэтому в момент, когда стержни опустили в активную зону реактора, его энергия возросла скачком, что привело к перегреву. Но это была всего лишь одна из множества причин.

Таким образом, алмаз и графит - два разных минерала с одинаковым элементом в основе. Их структуры делают свойства разными, что и представляет интерес. Каждый из них по-своему красив и имеет очень широкое применение как в очень сложных конструкциях, так и в предметах повседневности.

Добыча алмазов, несомненно, достаточно прибыльный бизнес, который может поддержать экономику любой страны. Но тем не менее, наверняка многим предпринимателям хотелось бы снизить затраты на этих драгоценных камней и этим самым еще увеличить доход алмазодобывающей отрасли. А что, если возможно получать алмазы синтетическим способом из графита?

Чтобы ответить на этот вопрос, необходимо разобраться в природе двух материалов – и графита. Многие еще из уроков помнят, что эти два, казалось бы, таких разных материала целиком и полностью состоят .

Алмаз представляет собой обычно прозрачный кристалл, но может быть и синим, и голубым, и красным, и даже черным. Это самое твердое и прочное вещество на Земле. Такая твердость обусловлена особым строением кристаллической решетки. Она имеет форму тетраэдра, и все атомы углерода находятся на одном расстоянии друг от друга. Графит же темно-серый с металлическим отливом, мягкий и совершенно непрозрачный. Кристаллическая решетка графита расположена слоями, в каждом из которых молекулы собраны в прочные , однако между слоями связь молекул достаточно слабая. То есть, по сути, разница между алмазом и графитом заключается в различном строении кристаллической решетки.

Получение алмаза из графита

Как таковое превращение графита в алмаз возможно. Это доказали еще ученые ХХ века. В 1955 г. был представлен отчет компании General Electric и синтезированы первые алмазы, правда, очень мелкие. Первым осуществил синтез исследователь компании Т. Холл. Для достижения таких успехов было применено оборудование, позволяющее создавать давление в 120 тыс. атмосфер и температуру в 1800°С.

Группой ученых из Allied Chemical Corporation было осуществлено прямое превращение графита в алмаз. Для этого были использованы более экстремальные условия по сравнению с предыдущими методами. Для создания на 1 микросекунду предельного давления в 300 тыс. атмосфер и температуры в 1200°С применялось взрывчатое вещество огромной мощности. В результате в образце графита обнаруживалось несколько мелких частичек алмаза. Данные о результате эксперимента были опубликованы в 1961 г.

Однако это были не все способы получения алмазов из графита. В 1967 г. Р. Уэнторф вырастил первый алмаз на затравке. Скорость роста оказалась достаточно низкой. Самый крупный алмаз Р. Уэнторфа, изготовленный данным методом, достиг размера в 6 мм и веса в 1 карат (примерно 0,2 г).

Современные методы синтеза алмазов из графита

Современные технологии позволяют получать алмазы из графита несколькими методами. Алмазы синтезируются в условиях, максимально приближенных к природным, а также с использованием катализаторов. Производится наращивание кристаллов алмаза в метановой среде, а мелкую алмазную пыль для производства различных абразивов получают методом взрыва взрывчатых веществ или проволоки большим импульсом тока.

Источники:

  • 1 Сравните строение алмаза и графита и их физические свойства: твердость, оптические свойства, электропроводность
  • Народные изобретения, технологии - История и технология получения алмазов

Человек уже давно и близко знаком с таким веществом, как . Этот минерал обладает множеством полезных свойств, позволяющих применять его в самых разных областях, начиная с повседневной жизни и заканчивая сложными фабричными процессами.

Название «графит» произошло от , которое можно перевести с древнегреческого языка как «пишу», « ». Такое наименование обусловлено тем, что именно из графита изготавливаются стержни для карандашей, которые уже не одно помогают людям излагать свои мысли на бумаге, рисовать и делать наброски для живописных полотен. Цвет у графита темно-серый или серовато-черный, также это обладает характерным блеском, сродни металлическому.

Графит представляет собой одну из форм, которые может принимать углерод, в зависимости от того, каким способом связаны друг с другом атомы этого элемента. Графит очень хорошо проводит электричество и обладает высокой устойчивостью к тепловому воздействию, плавится он при температуре более 3500оС. Этот минерал слабо подвержен воздействию кислот, особенно при и средних температурах, а уровень его диамагнетизма существенно превосходит нормальные показатели.

Твердый, играющий на свету алмаз и непрозрачный, легко отслаивающийся графит образно можно назвать родными братьями. Ведь в химическом составе того и другого присутствует единственный элемент – углерод. Выясним, почему, имея общее происхождение, эти минералы настолько не похожи друг на друга и чем отличается алмаз от графита.

Определение

Алмаз – минерал, основой которого является углерод. Характеризуется метастабильностью, то есть способностью в обычных условиях неограниченно долго существовать в неизменном виде. Помещение алмаза в специфические условия, например в вакуум при повышенной температуре, приводит к его переходу в графит.

Алмаз

Графит – минерал, выступающий модификацией углерода. При трении от общей массы вещества отделяются чешуйки. Наиболее известное применение графита – изготовление из него карандашного грифеля.


Графит

Сравнение

Явление, при котором вещества имеют различные свойства, но образованы общим химическим элементом, называется аллотропией. Однако в природе, пожалуй, больше не найдется таких абсолютно разных аллотропных форм одного и того же элемента. Чем объясняется отличие алмаза от графита?

Решающую роль здесь играют особенности кристаллической структуры каждого из веществ. Скажем про алмаз. Связь между его атомами невероятно прочная. Это обусловлено способом их расположения относительно друг друга. Смежные атомные ячейки вещества имеют кубическую форму. Частицы расположены в углах ячеек, на их гранях и внутри них. Этот тип строения называется тетраэдрическим.


Ячейка алмаза

Такая геометрия атомов обеспечивает наиболее плотную их организацию, благодаря чему алмаз становится твердым, не поддающимся деформации. Вместе с тем это хрупкое вещество, способное раскалываться от удара. Строением также обуславливается высокая теплопроводность алмаза и свойство его кристаллов преломлять свет.

Графит обладает иной структурой. На атомном уровне он состоит из пластов, расположенных в разных плоскостях. Каждый пласт составляют примыкающие друг к другу шестиугольники, подобно сотам. Связь между атомами, которые являются вершинами шестиугольников, сильна только в пределах каждого слоя. А атомы, находящиеся в разных слоях, практически независимы друг от друга.


Структура графита

След от карандаша – это легко отделяемые слои графита. Вещество из-за особенностей строения поглощает свет, принимая достаточно невзрачный вид (но с металлическим блеском), и обладает электропроводностью.

Присущие минералам свойства определяют их пригодность в той или иной сфере. В чем разница между алмазом и графитом относительно их применения? Блистающий алмаз идеален для ювелирного производства. А твердость этого материала позволяет изготавливать из него качественные резцы по стеклу, суперпрочные сверла и другие востребованные изделия.

Графитовые стержни при протекании многих процессов играют роль электродов. Измельченный графит входит в состав минеральных красок и применяется как смазочный материал. А из смеси этого вещества и глины производят специальные емкости для плавки металлов.