Как можно использовать солнечную энергию применение солнца. Использование солнечной энергии на земле. Параболические солнечные электростанции

Подробности Опубликовано 08.07.2015 15:28

Что принято называть солнечной энергией? Это энергия, производимая солнцем в виде света и тепла. Кроме того, существуют вторичные виды солнечной энергии, такие как энергия ветра и волн. Все названые виды энергии составляют большую часть возобновляемой энергии Земли.

Земля получает 174 петаватт (PW) солнечной радиации в верхних слоях атмосферы. 30% отражается обратно в космос, а остальная часть поглощается облаками, океанами и сушей. Поверхность земли, океаны и атмосфера поглощают солнечное излучение , что повышает их температуру. Теплый воздух, содержащий воду из океанов, поднимается вверх, вызывая конвекцию. Когда воздух достигает большой высоты, где температура низкая, водяной пар конденсируется в облака и вызывает дождь. Скрытая теплота конденсации воды увеличивает конвекцию, производя ветер. Энергия поглощается океанами и сушей, сохраняя поверхность при средней температуре около 14 C.

Зеленые растения преобразовывают солнечную энергию в химическую энергию посредством фотосинтеза. Производство наших продовольственных товаров полностью зависит от солнечной энергии. После своей жизни растения умирают и распадаются в Земле, так солнечная энергия обеспечивает биомассу, которая создала ископаемые виды топлива, которые мы знаем.


Способы использования солнечной энергии

Люди используют солнечную энергию в самых разных формах: для отопления и охлаждения помещений, производства питьевой воды дистилляции, дезинфекции, освещения, производства горячей воды и приготовления пищи. Способы использования солнечной энергии ограничены только человеческой изобретательностью.

Солнечные технологии бывают пассивными или активными, в зависимости от способа захвата энергии, которая затем преобразуется, и распространятся.

Активные солнечные технологии

К активным солнечным технологиям относят фотоэлектрические панели и солнечные тепловые коллекторы.

Пассивные солнечные технологии

Пассивные методы включают ориентацию здание к Солнцу, чтобы получать максимальное количество дневного света и тепла, а также выбор материалов с нужными тепловыми свойствами.


Наша нынешняя зависимость от ископаемого топлива медленно заменяется альтернативными источниками энергии. Некоторые виды топлива, в конечном итоге могут стать бесполезным, но солнечная энергия никогда не устареет, не будет контролироваться иностранными державами, и не закончится. Солнце использует собственные запасы водорода, оно будет производить полезную энергию, пока не взорвется. Задачей, стоящей перед людьми, является захват этой энергии, пока что самым простым способом это сделать, остается использование ископаемого топлива.

Энергия солнца – это всего лишь поток фотонов. И вместе с тем это – один из основополагающих факторов, обеспечивающих само существование жизни в нашей биосфере. Поэтому вполне естественно, что солнечный свет активно используется человеком не только в климатическом аспекте, но и в качестве альтернативного источника энергии.

Где используется солнечная энергия

Сфера применения энергии солнца очень обширна, и с каждым годом она становится все больше. Так, еще совсем недавно дачный душ с солнечным нагревателем воспринимался как нечто необыкновенное, а возможность использования солнечного света для домашних электросетей и вовсе казалась фантастикой. Сегодня же никого не удивишь не только автономной гелиостанцией, но и мобильными зарядками на солнечных батареях и даже мелкой техникой (например, часами), работающей на фотогальваническом эффекте.

Вообще же использование солнечной энергии очень востребовано в таких областях, как:

  • Сельское хозяйство;
  • Энергоснабжение санаториев и пансионатов;
  • Космическая отрасль;
  • Природоохранная деятельность и экотуризм;
  • Электрификация отдаленных и сложнодоступных регионов;
  • Уличное, садовое и декоративное освещение;
  • Сфера ЖКХ (ГВС, придомовое освещение);
  • Мобильная техника (гаджеты и зарядные модули на солнечных батареях).

Ранее энергия солнца использовалась главным образом в космической отрасли (энергоснабжение спутников, станций и т.д.) и в промышленности, но со временем альтернативную энергетику начали активно развивать и в быту. Одними из первых объектов, оснащенных солнечными установками, стали южные пансионаты и санатории, особенно расположенные в уединенных районах.

Солнечные установки и их преимущества

Успешное применение первых гелиомодулей доказало, что энергия солнечных лучей обладает массой преимуществ перед традиционными источниками. Ранее главными достоинствами гелиоустановок называли лишь экологичность и неисчерпаемость (а также бесплатность) солнечного света.

Но на самом деле список достоинств гораздо шире:

  • Автономность, так как не требуется никаких внешних энергокоммуникаций;
  • Стабильность подачи питания, в силу специфики солнечный ток не подвержен скачкам напряжения;
  • Экономичность, так как средства тратятся только один раз, при монтаже установки;
  • Солидный ресурс эксплуатации (свыше 20 лет);
  • Всесезонное использование, солнечные установки эффективно работают даже в морозы и облачную погоду (с незначительным снижением КПД);
  • Простота и удобство сервисного обслуживания, так как требуется только изредка очищать лицевые стороны панелей от загрязнений.

Единственным недостатком можно назвать только зависимость от солнца и тот факт, что такие установки не работают ночью. Но эта проблема решается за счет подключения специальных аккумуляторов, в которых накапливается выработанная за день энергия солнечного света.

Фотоэнергия

Фотоэнергия – это один из двух способов использования излучения солнца. Это постоянный ток, вырабатываемый под действием солнечных лучей. Происходит такое преобразование в так называемых фотоячейках, которые, по сути, представляют собой двухслойную структуру из двух полупроводников разного типа. Нижний полупроводник относится к p-типу (с недостатком электронов), верхний – к n-типу с избытком электронов.

Электроны n-проводника поглощают энергию падающих на них лучей солнца и покидают свои орбиты, причем энергетического импульса достаточно для того, чтобы они перешли в зону p-проводника. При этом образуется направленный электронный поток, называемый фототоком. Иными словами, вся структура работает как своеобразные электроды, в которых под воздействием солнца генерируется электроэнергия.

Для производства таких фотоячеек применяют кремний. Объясняется это тем, что кремний во-первых, широко распространен, а во-вторых, его промышленная обработка не требует больших затрат.

Фотоячейки из кремния бывают:

  • Монокристаллическими. Изготавливаются из монокристаллов и отличаются равномерной структурой с чуть более высоким КПД (примерно 20%), но при этом дороже стоят.
  • Поликристаллическими. Имеют неравномерную структуру за счет использования поликристаллов и несколько более низкий КПД (15-18%), но гораздо дешевле моновариантов.
  • Тонкопленочными. Изготавливаются методом напыления аморфного кремния на тонкопленочную подложку. Отличаются гибкой структурой и самой низкой себестоимостью производства, однако имеют вдвое больше габариты по сравнению с кристаллическими аналогами той же мощности.

Сферы применения каждого типа ячеек весьма обширны и определяются их эксплуатационными особенностями.

Солнечные коллекторы

Гелиоколлекторы также используются как преобразователи солнечной энергии, но принцип их действия совершенно иной. Они преобразуют падающий свет не в электрическую, а в тепловую энергию за счет нагрева жидкого теплоносителя. Применяют их либо для ГВС, либо для отопления домов. Главный элемент любого коллектора – абсорбер, он же – теплопоглотитель. Абсорбер представляет собой либо плоскую пластину, либо трубчатую вакуумированную систему, внутри которой циркулирует теплоноситель (это или простая вода, или антифриз). Причем абсорбер обязательно красится в черный цвет специальной краской для увеличения коэффициентов поглощения.

Именно по типу абсорберов коллекторы делят на плоские и вакуумные. У плоских теплопоглотитель выполняют в виде металлической пластины, к которой снизу припаян металлический же змеевик с теплоносителем. У вакуумных абсорбер изготавливается их нескольких соединенных между собой на концах стеклянных трубок. Трубки делают двойными, между стенками создают вакуум, а внутри помещают стержень с теплоносителем. Все стержни сообщаются между собой посредством специальных соединителей в местах стыков труб.

Абсорберы обоих типов помещают в прочный легкий корпус (обычно – из алюминия или ударопрочных пластиков) и надежно теплоизолируют от стенок. Лицевая же сторона корпуса закрывается прозрачным ударостойким стеклом с максимальной проницаемостью для фотонов. Это обеспечивает лучшее поглощение солнечной энергии.

Особенности функционирования

Принцип работы обоих типов коллекторов аналогичен. Нагреваясь в коллекторе до высоких температур, теплоноситель проходит по соединительным шлангам в теплообменный бак, который наполнен водой. Через бак он проходит по змеевидной трубке, отдавая свое тепло воде. Остывший теплоноситель выходит из бака и подается обратно в коллектор. По сути, это – своеобразный «солнечный» кипятильник», только вместо нагревательной спирали используется змеевик в баке, а вместо электросети – солнечный свет.

Конструктивные различия определяют и разницу в применении вакуумных и плоских коллекторов. Использование солнечного излучения при помощи вакуумных моделей возможно круглый год, в том числе и зимой, и в межсезонье. Плоские же варианты лучше работают в летний период. Однако они дешевле и проще вакуумных, поэтому оптимально подходят именно для сезонных целей.

Солнечная энергия в городах (экодома)

Гелиоэнергетика активно применяется не только для частных домов, но и для городских строений. Как человек использует солнечную энергию в мегаполисах, догадаться не сложно. Она также применяется для обогрева и ГВС зданий, причем нередко – целых кварталов.

В последние годы активно развиваются и воплощаются концепции экодомов, полностью работающих на альтернативных источниках энергии. В них используются комбинированные системы, обеспечивающие эффективное получение солнечной, ветровой и тепловой энергии земли. Нередко такие дома не только целиком покрывают свои энергетические нужды, но и передают излишки в городские сети. Причем совсем недавно проекты таких экозданий появились и в России.

Гелиостанции и их виды

В южных регионах с высокой инсоляцией строят не просто отдельные гелиоустановки, но целые станции, вырабатывающие энергию в промышленных масштабах. Количество солнечной энергии, производимое ими, весьма велико и многие страны с подходящим климатом уже начали постепенный перевод всей энергосистемы на такой альтернативный вариант. По принципу работу станции делят на фототермические и фотоэлектрические. Первые работают по методу коллекторов и подают в дома разогретую воду для ГВС, вторые же вырабатывают непосредственно электричество.

Существует несколько видов гелиостанций:

  • Башенные. Позволяют получать сверхнагретый водяной пар, подаваемый на генераторы. В центре станции базируется башня с водным резервуаром, вокруг нее размещают гелиостаты (зеркальные), которые фокусируют лучи на резервуаре. Это достаточно эффективные станции, главный их недостаток – сложность точного позиционирования зеркал.
  • Тарельчатые. Состоят из приемника гелиоэнергии и отражателя. Отражатель – тарелкообразное зеркало, концентрирующее излучение на приемнике. Такие концентраторы солнечной энергии располагаются на небольшом удалении от приемника, а их количество определяется требуемой мощностью установки.
  • Параболические. Трубки с теплоносителем (обычно – маслом) помещают в фокусе длинного параболического зеркала. Разогретое масло отдает тепло воде, та вскипает и вращает генераторы.
  • Аэростатные. По сути, это самые эффективные и мобильные гелиостанции на Земле. Их главный элемент – аэростат с фотоэлектрическим слоем, наполненный водяным паром. Он поднимается высоко в атмосферу (обычно выше облаков). Разогретый пар из шара по гибкому паропроводу подается на турбину, на выходе из нее конденсируется и вода насосом поднимается обратно в шар. Попав в шар, вода испаряется и цикл продолжается.
  • На фотобатареях. Это уже привычные всем установки на солнечных батареях, которые используются для частных домов. Они обеспечивают получение электроэнергии и подогрев воды в нужных объемах.

Сегодня разного рода гелиостанции (в том числе и комбинированные, объединяющие несколько типов) играют все большую роль в энерговыработке многих стран. А некоторые государства перестраивают свою энергетику таким образом, чтобы через несколько лет вообще практически полностью перейти на альтернативные системы.

Солнце - один из самых безопасных и неисчерпаемых источников энергии. Грамотное использование ее - вопрос экологической безопасности и экономической эффективности деятельности любой отрасли или страны. Такой источник энергии, как солнце, обладает рядом значительных преимуществ перед другими, популярными . Оно не погаснет и может подарить человеку огромное количество киловатт часов, оно экологично и экономично, Солнце доступно для любого уголка Земли и способно сохранить природные ресурсы, истощаемые с каждым вырубленным деревом и добытым килограммом угля.

Солнечная энергия восстановима, то есть может существовать без вмешательства человека в природу, в отличие от атомной энергии, солнце не сможет причинить вреда окружающей среде и сохраняет чистоту лесов и рек в первозданном виде.

Примеры использования

Возьмите в руки обычный на солнечных батареях - это самый элементарный пример использования солнечной энергии и превращения ее в электрическую, темные поверхности способны эффективно поглощать лучи и использовать энергию светила, преобразуя ее в тепловую. Специальные технологии, являющиеся передовыми достижениями в науке и технике, давно используются для сбора и хранения солнечной энергии, которая сумела успешно заменить бензин в автомобилях, отапливать и освещать дома.

Использование географических особенностей расположения тех или иных построек вкупе с современными материалами позволяет человечеству полностью перейти на энергию солнечного света при этом все современные средства связи: телевидение, интернет и прочие удобства будут продолжать функционировать в обычном режиме. Такие здания отличаются экологической чистотой и высокой экономичностью.

Специальные элементы, преобразующие солнечную энергию, успешно используются в космических технологиях, современные спутники и космические станции оборудуются специальными батареями, питающимися от лучей общего светила. Солнечная энергия весьма удобна в использовании и доступна даже в диких и наиболее удаленных уголках земного шара, где проведение коммуникаций и линий электропередач весьма затруднительно или невозможно.

Использование электрической энергии в чистом виде не всегда удобно, именно поэтому многие системы используют смешанные источники электричества, сочетая Солнце и традиционные виды энергии.

Люди уже не представляют себе жизнь без электричества, и с каждым годом потребность в энергии все больше растет, в то время как запасы энергоресурсов таких нефть, газ, уголь стремительно сокращаются. У человечества не остается других вариантов, как использование альтернативных источников энергии. Одним из способов получения электроэнергии является преобразование солнечной энергии с помощью фотоэлементов. То, что можно использовать энергию солнца люди узнали относительно давно, но активно развивать начали лишь в последние 20 лет. За последние годы благодаря не прекращающимся исследованиям, использованию новейших материалов и креативных конструкторских решений удалось значительно увеличить производительность солнечных батарей. Многие полагают, что в будущем человечество сможет отказаться от традиционных способов получения электроэнергии в пользу солнечной энергии и получать ее с помощью солнечных электростанций.

Солнечная энергетика

Солнечная энергетика один из источников получения электроэнергии не традиционным способом, поэтому относится к альтернативным источникам энергии. Солнечная энергетика использует солнечное излучение и преобразовывает его в электричество или в другие виды энергии. Солнечная энергия является не только экологически чистым источником энергии, т.к. при преобразовании солнечной энергии не выделяется вредных побочных продуктов, но еще энергия солнца самовосстанавливающийся источник альтернативной энергии.

Как работает солнечная энергетика

Теоретически рассчитать, сколько можно получить энергии от потока солнечной энергии несложно, давно известно, что пройдя расстояние от Солнца до Земли и падая на поверхность площадью 1 м² под углом 90°, солнечный поток на входе в атмосферу несет в себе энергетический заряд равный 1367 Вт/м², это так называемая солнечная постоянная. Это идеальный вариант при идеальных условиях, которых как мы знаем добиться практически не возможно. Таким образом после прохождения атмосферы максимальный поток который можно получить будет на экваторе и будет составлять 1020 Вт/м², но среднесуточное значение которое мы сможем получить будет в 3 раза меньше из-за смены дня и ночи и изменения угла падения солнечного потока. А в умеренных широтах к смене дня и ночи прибавляется еще и смена времен года, а с ним и изменение длительности светового дня, поэтому в умеренных широтах количество получаемой энергии сократится еще в 2 раза.

Развитие и распространение солнечной энергетики

Как мы все знаем, в последние несколько лет развитие солнечной энергетики с каждым годом все больше набирает темпы, но давайте попробуем проследить динамику развития. В далеком 1985 году мировые мощности, использующие солнечную энергию, составляли всего лишь 0,021 ГВт. В 2005 году они уже составляли 1,656 ГВт. 2005 год считают переломным в развитии солнечной энергетике, именно с этого года люди началось активно интересоваться исследованиями и развитием электросистем работающих на солнечной энергии. Далее динамика не оставляет сомнений (2008г-15,5 ГВт, 2009-22,8 ГВт, 2010-40 ГВт, 2011-70 ГВт, 2012-108 ГВт, 2013-150 ГВт, 2014-203 ГВт). Пальму первенства в использовании солнечной энергии держат страны Евросоюза и США, в производственной и эксплуатационной сфере только в США и Германии заняты больше 100 тыс. людей в каждой. Также своими достижениями в освоении солнечной энергии могут похвастаться Италия, Испания и, конечно же, Китай, который если и не является лидером в эксплуатации солнечных элементов то, как производитель фотоэлементов из года в год наращивает темпы производства.

Достоинства и недостатки использования солнечной энергии

Достоинства: 1) экологичность-не загрязняет окружающую среду; 2) доступность-фотоэлементы доступны в продаже не только для промышленного использования, но и для создания частных мини солнечных электростанций; 3) неисчерпаемость и само восстанавливаемость источника энергии; 4) постоянно снижающаяся себестоимость производства электроэнергии.
Недостатки: 1) влияние на производительность погодных условий и времени суток; 2) для сохранения энергии необходимо аккумулировать энергию; 3) меньшая производительность в умеренных широтах из-за смены времен года; 4)значительный нагрев воздуха над солнечной электростанцией; 5) потребность периодически очищать поверхность фотоэлементов от загрязнения, а это проблематично из за огромных площадей, занимаемых под установку фотоэлементов; 6) также можно сказать об относительно высокой стоимости оборудования, хоть с каждым годом себестоимость снижается, пока говорить о дешевой солнечной энергии не приходится.

Перспективы развития солнечной энергетики

На сегодняшний день развитию солнечной энергетики пророчат большое будущее, с каждым годом все больше строятся новые солнечные электростанции, которые поражают своими масштабами и техническими решениями. Также не прекращаются научные исследования, направленные на увеличение КПД фотоэлементов. Ученые посчитали, что если покрыть сушу планеты Земля на 0,07%, с КПД фотоэлементов в 10%, то энергии хватит более чем на 100% обеспечения всех потребностей человечества. На сегодняшний день уже используются фотоэлементы с КПД в 30%. По исследовательским данным известно, что амбиции ученых обещают довести его до 85%.

Солнечные электростанции

Солнечные электростанции это сооружения задачей, которых является преобразовывать потоки солнечной энергии в электрическую энергию. Размеры солнечных электростанций могут быть различными, начиная от частных мини электростанций с несколькими солнечными панелями и заканчивая огромными, занимающими площади свыше 10 км².

Какие бывают солнечные электростанции

Со времени постройки первых солнечных электростанций прошло довольно много времени, за которое было осуществлено множество проектов и применено немало интересных конструкционных решений. Принято делить все солнечные электростанции на несколько типов:
1. Солнечные электростанции башенного типа.
2. Солнечные электростанции, где солнечные батарей представляют собой фотоэлементы.
3. Тарельчатые солнечные электростанции.
4. Параболические солнечные электростанции.
5. Солнечные электростанции солнечно-вакуумного типа.
6. Солнечные электростанции смешанного типа.

Солнечные электростанции башенного типа

Очень распространенный тип конструкции электростанции. Представляет собой высокую башенную конструкцию на вершине, которой расположен резервуар, с водой выкрашенный в черный цвет для лучшего притягивания отраженного солнечного света. Вокруг башни по кругу расположены большие зеркала площадью свыше 2 м², они все подключены к единой системе управления, которая следит за изменением угла наклона зеркал, что бы они всегда отражали солнечный свет и направляли его прямиком на резервуар с водой расположенный на верхушке башни. Таким образом, отраженный солнечный свет нагревает воду, которая образует пар, а затем этот пар с помощью насосов подается на турбогенератор где и происходит выработка электроэнергии. Температура нагрева бака может достигать 700 °C. Высота башни зависит от размеров и мощности солнечной электростанции и, как правило, начинается от 15 м, а высота самой большой на сегодняшний день составляет 140 м. Такой тип солнечных электростанций очень распространен и предпочитается многими странами за свой высокий КПД в 20%.

Солнечные электростанции фотоэлементного типа

Используют для преобразования солнечного потока в электричество фотоэлементы (солнечные батареи). Данный тип электростанций стал очень популярным благодаря возможности использования солнечных батарей небольшими блоками, что позволяет применять солнечные батареи для обеспечения электричеством, как частных домов, так и крупных промышленных объектов. Тем более что КПД с каждым годом растет и на сегодняшний день уже существуют фотоэлементы с КПД 30%.

Параболические солнечные электростанции

Данный тип солнечной электростанции имеет вид огромных спутниковых антенн, внутренняя сторона которых покрыта зеркальными пластинами. Принцип, по которому происходит преобразование энергии, похож с башенными станциями с небольшим отличием, параболическая форма зеркал обусловливает, что солнечные лучи, отражаясь от всей поверхности зеркала, концентрируются в центре, где расположен приемник с жидкостью, которая нагревается, образуя пар, который в свою очередь и является движущей силой для небольших генераторов.

Тарельчатые солнечные электростанции

Принцип работы и способ получения электроэнергии идентичен солнечным электростанциям башенного и параболического типа. Отличие составляет лишь конструктивные особенности. На стационарной конструкции немного похожей на гигантское металлическое дерево, на котором развешены круглые плоские зеркала, которые концентрируют солнечную энергию на приемнике.

Солнечные электростанции солнечно-вакуумного типа

Это очень необычный способ использования энергии солнца и разности температур. Конструкция электростанции состоит из покрытого стеклянной крышей участка земли круглой формы с башней в центре. Башня внутри полая, в ее основании расположены несколько турбин, которые вращаются благодаря возникающему из-за разности температур потоку воздуха. Через стеклянную крышу солнце нагревает землю и воздух внутри помещения, а с внешней средой здание сообщается трубой и так как вне помещения температура воздух значительно ниже, то создается воздушная тяга, которая увеличивается с ростом разницы температур. Таким образом, ночью турбины вырабатывают электроэнергии больше чем днем.

Солнечные электростанции смешанного типа

Это когда на солнечных электростанциях определенного типа в качестве вспомогательных элементов используют, например солнечные коллекторы для обеспечения объектов горячей водой и теплом или возможно использование одновременно на электростанции башенного типа участков фотоэлементов.

Солнечная энергетика развивается высокими темпами, люди, наконец, то всерьез задумались об альтернативных источниках энергии, что бы предупредить неизбежно надвигающийся энергетический кризис и экологическую катастрофу. Хоть лидерами в солнечной энергетике по-прежнему остаются США и Евросоюз, но все остальные мировые державы постепенно начинают перенимать и использовать опыт и технологии производства и использования солнечных электростанций. Можно не сомневаться, что рано или поздно солнечная энергия станет основным источником энергии на Земле.

Принцип преобразования солнечной энергии, её применение и перспективы

В мире всё меньше традиционных источников энергии. Запасы нефти, газа, угля истощаются и всё идёт к тому, что рано или поздно они закончатся. Если к этому времени не найти альтернативных источников энергии, то человечество ждёт катастрофа. Поэтому во всех развитых странах ведутся исследования по открытию и разработке новых источников энергии. В первую очередь – это солнечная энергия. С древних времён эта энергию использовалась людьми для освещения жилища, сушки продуктов, одежды и т. п. Солнечная энергетика сегодня является одним из наиболее перспективных источников альтернативной энергии. В настоящее время уже есть достаточно много конструкций, позволяющих преобразовывать энергию солнца в электрическую или тепловую. Отрасль постепенно растёт и развивается, но, как и везде, есть свои проблемы. Обо всём этом речь пойдёт в настоящем материале.

Энергия солнца является одним из самых доступных возобновляемых источников на Земле. Использование солнечной энергии в народном хозяйстве положительно сказывается на состоянии окружающей среды, поскольку для её получения не требуется бурить скважины или разрабатывать шахты. К тому же, этот вид энергии свободный и не стоит ничего. Естественно, что требуются затраты на покупку и монтаж оборудования.

Проблема в том, что солнце – это прерывистый источник энергии. Так, что требуется накопление энергии и использование её в связке с другими энергетическими источниками. Основная проблема на сегодняшний день заключается в том, что современное оборудование имеет низкую эффективность преобразования энергии солнца в электрическую и тепловую. Поэтому все разработки направлены на то, чтобы увеличить КПД таких систем и снизить их стоимость.

Кстати, очень много ресурсов на планете представляют собой производные от солнечной энергии. К примеру, ветер, который является ещё одним возобновляемым источников, не дул бы без солнца. Испарение воды и накопление её в реках также происходит под действием солнца. А вода, как известно, используется гидроэнергетике. Биотоплива также не было бы без солнца. Поэтому, помимо прямого источника энергии, солнце влияет на другие сферы энергетики.

Солнце отправляет к поверхности нашей планеты радиацию. Из широкого спектра излучения поверхности Земли достигают 3 типа волн:

  • Световые. В спектре излучения их примерно 49 процентов;
  • Инфракрасные. Их доля также 49 процентов. Благодаря этим волнам наша планета нагревается;
  • Ультрафиолетовые. В спектре солнечного излучения их примерно 2 процента. Они невидимы для нашего глаза.

Экскурс в историю

Как развивалась солнечная энергетика до наших дней? Об использовании солнца в своей деятельности человек думал с древних времён. Всем известна легенда, согласно которой Архимед сжёг флот неприятеля у своего города Сиракузы. Он использовал для этого зажигательные зеркала. Несколько тысяч лет назад на Ближнем востоке дворцы правителей отапливали водой, которая нагревалась солнцем. В некоторых странах выпариваем морской воды на солнце получали соль. Учёные часто проводили опыты с нагревательными аппаратами, работающими от солнечной энергии.

Первые модели таких нагревателей были выпущены в XVII─XVII веках. В частности, исследователь Н. Соссюр представил свою версию водонагревателя. Он представляет собой ящик из дерева, накрытый стеклянной крышкой. Вода в этом устройстве подогревалась до 88 градусов Цельсия. В 1774 году А. Лавуазье использовал линзы для концентрации тепла от солнца. И также появились линзы, позволяющие локально расплавить чугун за несколько секунд.

Батареи, преобразующие энергию солнца в механическую, создали французские учёные. В конце XIX века исследователь О. Мушо разработал инсолятор, фокусирующий лучи с помощью линзы на паровом котле. Этот котёл использовался для работы печатной машины. В США в то время удалось создать агрегат, работающий от солнца, мощностью в 15 «лошадей».



Долгое время инсоляторы выпускались по схеме, использующей энергию солнца для превращения воды в пар. И преобразованная энергия использовалась для совершения какой-либо работы. Первое устройство, преобразующее солнечную энергию в электрическую, было создано в 1953 году в США. Оно стало прообразом современных солнечных батарей. Фотоэлектрический эффект, на котором основана их работа, был открыт ещё в 70-е годы XIX столетия.

В тридцатые годы прошлого столетия академик СССР А. Ф. Иоффе предложил использовать полупроводниковые фотоэлементы для преобразования энергии солнца. КПД батарей в то время был менее 1%. Прошло много лет до того, как были разработаны фотоэлементы, имеющие КПД на уровне 10─15 процентов. Затем американцы построили солнечные батареи современного типа.

Для получения большей мощности солнечных систем низкий КПД компенсируется увеличенной площадью фотоэлементов. Но это не выход, поскольку кремниевые полупроводники в фотоэлементах довольно дорогие. При увеличении КПД возрастает стоимость материалов. Это является главным препятствием для массового использования солнечных батарей. Но по мере истощения ресурсов их использование будет всё более выгодным. Кроме того, исследования по увеличению КПД фотоэлементов не прекращаются.

Стоит сказать, что батареи на основе полупроводников достаточно долговечны и не требуют квалификации для ухода за ними. Поэтому их чаще всего используют в быту. Есть также целые солнечные электростанции. Как правило, они создаются в странах с большим числом солнечных дней в году. Это Израиль, Саудовская Аравия, юг США, Индия, Испания. Сейчас есть и совсем фантастические проекты. Например, солнечные электростанции вне атмосферы. Там солнечный свет ещё не потерял энергию. То есть, излучение предлагается улавливать на орбите и затем переводить в микроволны. Затем в таком виде энергия будет отправляться на Землю.

Преобразование солнечной энергии

Прежде всего, стоит сказать о том, в чём можно выразить и оценить солнечную энергию.

Как можно оценить величину солнечной энергии?

Специалисты используют для оценки такую величину, как солнечная постоянная. Она равна 1367 ватт. Именно столько энергии солнца приходится на квадратный метр планеты. В атмосфере теряется примерно четверть. Максимальное значение на экваторе – 1020 ватт на квадратный метр. С учётом дня и ночи, изменения угла падения лучей, эту величину следует уменьшить ещё в три раза.



Версии об источниках солнечной энергии высказывались самые разные. На данный момент специалисты утверждают, что энергии высвобождается в результате превращения четырёх атомов H2 в ядро He. Процесс протекает с выделением существенного количества энергии. Для сравнения представьте, что энергия превращения 1 грамма H2 сопоставима с той, что выделяется при сжигании 15 тонн углеводородов.

Способы преобразования

Поскольку наука на сегодняшний день не имеет устройств, работающих на энергии солнца в чистом виде, её требуется преобразовать в другой тип. Для этого были созданы такие устройства, как солнечные батареи и коллектор. Батареи преобразуют солнечную энергию в электрическую. А коллектор вырабатывает тепловую энергию. Есть также модели, совмещающие эти два вида. Они называются гибридными.




Основные способы преобразования энергии солнца представлены ниже:
  • фотоэлектрический;
  • гелиотермальный;
  • термовоздушный;
  • солнечные аэростатные электростанции.

Первый способ самый распространённый. Здесь используются фотоэлектрические панели, которые под воздействием солнца вырабатывают электрическую энергию. В большинстве случаев их делают из кремния. Толщина таких панелей составляет десятые доли миллиметра. Такие панели объединяются в фотоэлектрические модули (батареи) и устанавливаются на солнце. Чаще всего их ставят на крышах домов. В принципе, ничто не мешает разместить их на земле. Нужно, только чтобы вокруг них не было крупных предметов, других зданий и деревьев, которые могут отбрасывать тень.

Кроме фотоэлементов, для получения электрической энергии применяются тонкопленочные или . Их преимуществом является малая толщина, а недостатком – сниженный КПД. Такие модели часто используются в портативных зарядках для различных гаджетов.

Термовоздушный способ преобразования подразумевает получение энергию потока воздуха. Этот поток направляется на турбогенератор. В аэростатных электростанциях под действием солнечной энергии в аэростатном баллоне генерируется водяной пар. Поверхность аэростата покрывается специальным покрытием, поглощающим солнечные лучи. Такие электростанции способны работать в пасмурную погоду и в тёмное время суток благодаря запасу пара в аэростате.

Гелиотремальная энергетика основана на нагреве поверхности энергоносителя в специальном коллекторе. Например, это может быть нагрев воды для системы отопления дома. В качестве теплоносителя может использоваться не только вода, но и воздух. Он может нагреваться в коллекторе и подаваться в систему вентиляции дома.

Все эти системы стоят достаточно дорого, но их освоение и совершенствование постепенно продолжается.

Преимущества и недостатки солнечной энергии

Преимущества

  • Бесплатно. Одно из главных преимуществ энергии солнца – это отсутствие платы за неё. Солнечные панели делаются с использованием кремния, запасов которого достаточно много;
  • Нет побочного действия. Процесс преобразования энергии происходит без шума, вредных выбросов и отходов, воздействия на окружающую среду. Этого нельзя сказать о тепловой, гидро и атомной энергетике. Все традиционные источники в той или иной мере наносят вред ОС;
  • Безопасность и надёжность. Оборудование долговечное (служит до 30 лет). После 20─25 лет использования фотоэлементы выдают до 80 процентов от своего номинала;
  • Рециркуляция. Солнечные панели полностью перерабатываются и могут быть снова использованы в производстве;
  • Простота обслуживания. Оборудование довольно просто разворачивается и работает в автономном режиме;
  • Хорошо адаптированы для использования в частных домах;
  • Эстетика. Можно установить на крыше или фасаде здания не в ущерб внешнему виду;
  • Хорошо интегрируются в качестве вспомогательных систем энергоснабжения.