Потенциальная энергия гравитационного взаимодействия. Гравитационная потенциальная энергия

Энергией называется скалярная физическая величина, являющаяся единой мерой различных форм движения материи и мерой перехода движения материи из одних форм в другие.

Для характеристики различных форм движения материи вводятся соответствующие виды энергии, например: механическая, внутренняя, энергия электростатических, внутриядерных взаимодействий и др.

Энергия подчиняется закону сохранения, который является одним из важнейших законов природы.

Механическая энергия Е характеризует движение и взаимодействие тел и является функцией скоростей и взаимного расположения тел. Она равна сумме кинетической и потенциальной энергий.

Кинетическая энергия

Рассмотрим случай, когда на тело массой m действует постоянная сила \(~\vec F\) (она может быть равнодействующей нескольких сил) и векторы силы \(~\vec F\) и перемещения \(~\vec s\) направлены вдоль одной прямой в одну сторону. В этом случае работу силы можно определить как A = F s . Модуль силы по второму закону Ньютона равен F = m∙a , а модуль перемещения s при равноускоренном прямолинейном движении связан с модулями начальной υ 1 и конечной υ 2 скорости и ускорения а выражением \(~s = \frac{\upsilon^2_2 - \upsilon^2_1}{2a}\) .

Отсюда для работы получаем

\(~A = F \cdot s = m \cdot a \cdot \frac{\upsilon^2_2 - \upsilon^2_1}{2a} = \frac{m \cdot \upsilon^2_2}{2} - \frac{m \cdot \upsilon^2_1}{2}\) . (1)

Физическая величина, равная половине произведения массы тела на квадрат его скорости, называется кинетической энергией тела .

Кинетическая энергия обозначается буквой E k .

\(~E_k = \frac{m \cdot \upsilon^2}{2}\) . (2)

Тогда равенство (1) можно записать в таком виде:

\(~A = E_{k2} - E_{k1}\) . (3)

Теорема о кинетической энергии

работа равнодействующей сил, приложенных к телу, равна изменению кинетической энергии тела.

Так как изменение кинетической энергии равно работе силы (3), кинетическая энергия тела выражается в тех же единицах, что и работа, т. е. в джоулях.

Если начальная скорость движения тела массой m равна нулю и тело увеличивает свою скорость до значения υ , то работа силы равна конечному значению кинетической энергии тела:

\(~A = E_{k2} - E_{k1}= \frac{m \cdot \upsilon^2}{2} - 0 = \frac{m \cdot \upsilon^2}{2}\) . (4)

Физический смысл кинетической энергии

кинетическая энергия тела, движущегося со скоростью υ, показывает, какую работу должна совершить сила, действующая на покоящееся тело, чтобы сообщить ему эту скорость.

Потенциальная энергия

Потенциальная энергия – это энергия взаимодействия тел.

Потенциальная энергия поднятого над Землей тела – это энергия взаимодействия тела и Земли гравитационными силами. Потенциальная энергия упруго деформированного тела – это энергия взаимодействия отдельных частей тела между собой силами упругости.

Потенциальными называются силы , работа которых зависит только от начального и конечного положения движущейся материальной точки или тела и не зависит от формы траектории.

При замкнутой траектории работа потенциальной силы всегда равна нулю. К потенциальным силам относятся силы тяготения, силы упругости, электростатические силы и некоторые другие.

Силы , работа которых зависит от формы траектории, называются непотенциальными . При перемещении материальной точки или тела по замкнутой траектории работа непотенциальной силы не равна нулю.

Потенциальная энергия взаимодействия тела с Землей

Найдем работу, совершаемую силой тяжести F т при перемещении тела массой m вертикально вниз с высоты h 1 над поверхностью Земли до высоты h 2 (рис. 1). Если разность h 1 – h 2 пренебрежимо мала по сравнению с расстоянием до центра Земли, то силу тяжести F т во время движения тела можно считать постоянной и равной mg .

Так как перемещение совпадает по направлению с вектором силы тяжести, работа силы тяжести равна

\(~A = F \cdot s = m \cdot g \cdot (h_1 - h_2)\) . (5)

Рассмотрим теперь движение тела по наклонной плоскости. При перемещении тела вниз по наклонной плоскости (рис. 2) сила тяжести F т = m∙g совершает работу

\(~A = m \cdot g \cdot s \cdot \cos \alpha = m \cdot g \cdot h\) , (6)

где h – высота наклонной плоскости, s – модуль перемещения, равный длине наклонной плоскости.

Движение тела из точки В в точку С по любой траектории (рис. 3) можно мысленно представить состоящим из перемещений по участкам наклонных плоскостей с различными высотами h ’, h ’’ и т. д. Работа А силы тяжести на всем пути из В в С равна сумме работ на отдельных участках пути:

\(~A = m \cdot g \cdot h" + m \cdot g \cdot h"" + \ldots + m \cdot g \cdot h^n = m \cdot g \cdot (h" + h"" + \ldots + h^n) = m \cdot g \cdot (h_1 - h_2)\) , (7)

где h 1 и h 2 – высоты от поверхности Земли, на которых расположены соответственно точки В и С .

Равенство (7) показывает, что работа силы тяжести не зависит от траектории движения тела и всегда равна произведению модуля силы тяжести на разность высот в начальном и конечном положениях.

При движении вниз работа силы тяжести положительна, при движении вверх – отрицательна. Работа силы тяжести на замкнутой траектории равна нулю.

Равенство (7) можно представить в таком виде:

\(~A = - (m \cdot g \cdot h_2 - m \cdot g \cdot h_1)\) . (8)

Физическую величину, равную произведению массы тела на модуль ускорения свободного падения и на высоту, на которую поднято тело над поверхностью Земли, называют потенциальной энергией взаимодействия тела и Земли.

Работа силы тяжести при перемещении тела массой m из точки, расположенной на высоте h 2 , в точку, расположенную на высоте h 1 от поверхности Земли, по любой траектории равна изменению потенциальной энергии взаимодействия тела и Земли, взятому с противоположным знаком.

\(~A = - (E_{p2} - E_{p1})\) . (9)

Потенциальная энергия обозначается буквой Е p .

Значение потенциальной энергии тела, поднятого над Землей, зависит от выбора нулевого уровня, т. е. высоты, на которой потенциальная энергия принимается равной нулю. Обычно принимают, что потенциальная энергия тела на поверхности Земли равна нулю.

При таком выборе нулевого уровня потенциальная энергия Е p тела, находящегося на высоте h над поверхностью Земли, равна произведению массы m тела на модуль ускорения свободного падения g и расстояние h его от поверхности Земли:

\(~E_p = m \cdot g \cdot h\) . (10)

Физический смысл потенциальной энергии взаимодействия тела с Землей

потенциальная энергия тела, на которое действует сила тяжести, равна работе, совершаемой силой тяжести при перемещении тела на нулевой уровень.

В отличие от кинетической энергии поступательного движения, которая может иметь лишь положительные значения, потенциальная энергия тела может быть как положительной, так и отрицательной. Тело массой m , находящееся на высоте h , где h < h 0 (h 0 – нулевая высота), обладает отрицательной потенциальной энергией:

\(~E_p = -m \cdot g \cdot h\) .

Потенциальная энергия гравитационного взаимодействия

Потенциальная энергия гравитационного взаимодействия системы двух материальных точек с массами m и М , находящихся на расстоянии r одна от другой, равна

\(~E_p = G \cdot \frac{M \cdot m}{r}\) . (11)

где G – гравитационная постоянная, а нуль отсчета потенциальной энергии (Е p = 0) принят при r = ∞.

Потенциальная энергия гравитационного взаимодействия тела массой m с Землей, где h – высота тела над поверхностью Земли, M e – масса Земли, R e – радиус Земли, а нуль отсчета потенциальной энергии выбран при h = 0.

\(~E_e = G \cdot \frac{M_e \cdot m \cdot h}{R_e \cdot (R_e +h)}\) . (12)

При том же условии выбора нуля отсчета потенциальная энергия гравитационного взаимодействия тела массой m с Землей для малых высот h (h « R e) равна

\(~E_p = m \cdot g \cdot h\) ,

где \(~g = G \cdot \frac{M_e}{R^2_e}\) – модуль ускорения свободного падения вблизи поверхности Земли.

Потенциальная энергия упруго деформированного тела

Вычислим работу, совершаемую силой упругости при изменении деформации (удлинения) пружины от некоторого начального значения x 1 до конечного значения x 2 (рис. 4, б, в).

Сила упругости изменяется в процессе деформации пружины. Для нахождения работы силы упругости можно взять среднее значение модуля силы (т.к. сила упругости линейно зависит от x ) и умножить на модуль перемещения:

\(~A = F_{upr-cp} \cdot (x_1 - x_2)\) , (13)

где \(~F_{upr-cp} = k \cdot \frac{x_1 - x_2}{2}\) . Отсюда

\(~A = k \cdot \frac{x_1 - x_2}{2} \cdot (x_1 - x_2) = k \cdot \frac{x^2_1 - x^2_2}{2}\) или \(~A = -\left(\frac{k \cdot x^2_2}{2} - \frac{k \cdot x^2_1}{2} \right)\) . (14)

Физическая величина, равная половине произведения жесткости тела на квадрат его деформации, называется потенциальной энергией упруго деформированного тела:

\(~E_p = \frac{k \cdot x^2}{2}\) . (15)

Из формул (14) и (15) следует, что работа силы упругости равна изменению потенциальной энергии упруго деформированного тела, взятому с противоположным знаком:

\(~A = -(E_{p2} - E_{p1})\) . (16)

Если x 2 = 0 и x 1 = х , то, как видно из формул (14) и (15),

\(~E_p = A\) .

Физический смысл потенциальной энергии деформированного тела

потенциальная энергия упруго деформированного тела равна работе, которую совершает сила упругости при переходе тела в состояние, в котором деформация равна нулю.

Потенциальная энергия характеризует взаимодействующие тела, а кинетическая энергия – движущиеся тела. И потенциальная, и кинетическая энергия изменяются только в результате такого взаимодействия тел, при котором действующие на тела силы совершают работу, отличную от нуля. Рассмотрим вопрос об изменениях энергии при взаимодействиях тел, образующих замкнутую систему.

Замкнутая система – это система, на которую не действуют внешние силы или действие этих сил скомпенсировано . Если несколько тел взаимодействуют между собой только силами тяготения и силами упругости и никакие внешние силы на них не действуют, то при любых взаимодействиях тел работа сил упругости или сил тяготения равна изменению потенциальной энергии тел, взятому с противоположным знаком:

\(~A = -(E_{p2} - E_{p1})\) . (17)

По теореме о кинетической энергии, работа тех же сил равна изменению кинетической энергии:

\(~A = E_{k2} - E_{k1}\) . (18)

Из сравнения равенств (17) и (18) видно, что изменение кинетической энергии тел в замкнутой системе равно по абсолютному значению изменению потенциальной энергии системы тел и противоположно ему по знаку:

\(~E_{k2} - E_{k1} = -(E_{p2} - E_{p1})\) или \(~E_{k1} + E_{p1} = E_{k2} + E_{p2}\) . (19)

Закон сохранения энергии в механических процессах :

сумма кинетической и потенциальной энергии тел, составляющих замкнутую систему и взаимодействующих между собой силами тяготения и си-лами упругости, остается постоянной.

Сумма кинетической и потенциальной энергии тел называется полной механической энергией .

Приведем простейший опыт. Подбросим вверх стальной шарик. Сообщив начальную скорость υ нач, мы придадим ему кинетическую энергию, из-за чего он начнет подниматься вверх. Действие силы тяжести приводит к уменьшению скорости шарика, а значит, и его кинетической энергии. Но шарик поднимается выше и выше и приобретает все больше и больше потенциальной энергии (Е p = m∙g∙h ). Таким образом, кинетическая энергия не исчезает бесследно, а происходит ее превращение в потенциальную энергию.

В момент достижения верхней точки траектории (υ = 0) шарик полностью лишается кинетической энергии (Е k = 0), но при этом его потенциальная энергия становится максимальной. Дальше шарик меняет направление движения и с увеличивающейся скоростью движется вниз. Теперь происходит обратное превращение потенциальной энергии в кинетическую.

Закон сохранения энергии раскрывает физический смысл понятия работы :

работа сил тяготения и сил упругости, с одной стороны, равна увеличению кинетической энергии, а с другой стороны, – уменьшению потенциальной энергии тел. Следовательно, работа равна энергии, превратившейся из одного вида в другой.

Закон об изменении механической энергии

Если система взаимодействующих тел не замкнута, то ее механическая энергия не сохраняется. Изменение механической энергии такой системы равно работе внешних сил:

\(~A_{vn} = \Delta E = E - E_0\) . (20)

где Е и Е 0 – полные механические энергии системы в конечном и начальном состояниях соответственно.

Примером такой системы может служить система, в которой наряду с потенциальными силами действуют непотенциальные силы. К непотенциальным силам относятся силы трения. В большинстве случаев, когда угол между силой трения F r тела составляет π радиан, работа силы трения отрицательна и равна

\(~A_{tr} = -F_{tr} \cdot s_{12}\) ,

где s 12 – путь тела между точками 1 и 2.

Силы трения при движении системы уменьшают ее кинетическую энергию. В результате этого механическая энергия замкнутой неконсервативной системы всегда уменьшается, переходя в энергию немеханических форм движения.

Например, автомобиль, двигавшийся по горизонтальному участку дороги, после выключения двигателя проходит некоторый путь и под действием сил трения останавливается. Кинетическая энергия поступательного движения автомобиля стала равной нулю, а потенциальная энергия не увеличилась. Во время торможения автомобиля произошло нагревание тормозных колодок, шин автомобиля и асфальта. Следовательно, в результате действия сил трения кинетическая энергия автомобиля не исчезла, а превратилась во внутреннюю энергию теплового движения молекул.

Закон сохранения и превращения энергии

при любых физических взаимодействиях энергия превращается из одной формы в другую.

Иногда угол между силой трения F tr и элементарным перемещением Δr равен нулю и работа силы трения положительна:

\(~A_{tr} = F_{tr} \cdot s_{12}\) ,

Пример 1 . Пусть, внешняя сила F действует на брусок В , который может скользить по тележке D (рис. 5). Если тележка перемещается вправо, то работа силы трения скольжения F tr2 , действующей на тележку со стороны бруска, положительна:

Пример 2 . При качении колеса его сила трения качения направлена вдоль движения, так как точка соприкосновения колеса с горизонтальной поверхностью двигается в направлении, противоположном направлению движения колеса, и работа силы трения положительна (рис. 6):

Литература

  1. Кабардин О.Ф. Физика: Справ. материалы: Учеб. пособие для учащихся. – М.: Просвещение, 1991. – 367 с.
  2. Кикоин И.К., Кикоин А.К. Физика: Учеб. для 9 кл. сред. шк. – М.: Про-свещение, 1992. – 191 с.
  3. Элементарный учебник физики: Учеб. пособие. В 3 т. / Под ред. Г.С. Ландсберга: т. 1. Механика. Теплота. Молекулярная физика. – М.: Физматлит, 2004. – 608 с.
  4. Яворский Б.М., Селезнев Ю.А. Справочное руководство по физике для поступающих в вузы и самообразования. – М.: Наука, 1983. – 383 с.

Установленный Ньютоном закон всемирного тяготения гласит:

ОПРЕДЕЛЕНИЕ: Гравитационная сила илисила тяготения – это сила, с которой две материальные точки притягивают друг друга, пропорциональная массам этих точек и обратно пропорциональная квадрату расстояния между ними, где– гравитационная постоянная. Эта сила направлена вдоль прямой, проходящей через взаимодействующие материальные точки.

Рассмотрим два тела массами m 1 ,m 2 (считаем их материальными точками) и будем их сближать от расстоянияr 1 доr 2 .

Элементарная работа на пути dr будет
. Полная работа

.

Т.е.
. Величина

(3.11)

называется потенциальной энергией тела в поле всемирного тяготения.

Если между телами действует сила притяжения, то U p <0;

если между телами действует сила отталкивания, то U p >0.

Из выражения (3.11) следует, что максимальное значение потенциальной энергии тяготеющие тела будут иметь тогда, когда они бесконечно (r=) удалены друг от друга (U p = 0).

Введем величину называемую потенциалом гравитационного поля.

ОПРЕДЕЛЕНИЕ: Потенциал – это скалярная величина, численно равная работе по перемещению в гравитационном поле тела единичной массы из данной точки поля на бесконечность (r=).

;
или
. Поле можно характеризовать потенциальной энергией, которой обладает в данном месте материальная точка.

Получаем, что
. Зная потенциал, можно вычислить работу, совершаемую над частицей массой «m» силами поля при перемещении ее из положения 1 в положение 2:.

В потенциальном поле можно провести поверхность, имеющую одинаковый потенциал. Такая поверхность называется эквипотенциальной .

3.12. Потенциальная энергия упруго деформированного тела.

Потенциальной энергией может обладать не только система взаимодействующих тел, но и отдельно взятое упруго деформированное тело (например, сжатая пружина, растянутый стержень и т.п.). В этом случае потенциальная энергия зависит от взаимного расположения отдельных частей тела (например, от расстояния между соседними витками пружины).

Определим работу, которую необходимо затратить для растяжения (или сжатия) пружины на величину «x» (рис.3.8). Будем считать, что пружина подчиняется закону Гука, т.е. упругая сила пропорциональна деформации. Будем проводить растяжение пружины очень медленно, чтобы силу
, с которой мы действуем на пружину, можно было все время считать равной по величине упругой силе
. Далее будем считать, что сила действует в направлении перемещения, т.е.
.

И

Рис. 3.9

сходя из предыдущего, можно записатьF внешн. =F упр. =kx, гдеx– удлинение пружины,k– коэффициент жесткости пружины, а согласно закону Гука направление упругой силы и перемещения противоположны (силы упругости обусловлены взаимодействием между частицами (молекулами и атомами) и имеют, в конечном счете, электрическую природу).

Пусть под действием силы
пружина растянулась наdx , тогдаdA = F · dx = k · x · dx .

;

Эта работа идет на увеличение потенциальной энергии пружины. В предположении, что потенциальная энергия недеформированной пружины равна «0» (U 1 = 0) получаем

(3.12)

– потенциальная энергия упругой деформации пружины.

3.13. Закон сохранения энергии.

Без нарушения общности рассмотрим систему, состоящую из двух частиц массами m 1 иm 2 . Пусть частицы взаимодействуют друг с другом с силами
и
, модули которых зависят от расстоянияR 12 между частицами. Установлено, что такие силы являютсяконсервативными , т.е. работа, совершаемая такими силами над частицами, определяется начальной и конечной конфигурациями системы. Пусть также, кроме внутренних сил на первую частицу действует внешняя консервативная силаи внешняя неконсервативная сила. Аналогично для второй частицы. Тогда уравнения движения частиц можно записать в виде:

Умножим каждое уравнение на
и сложим полученные выражения.

1. Распишем первый член в правой части.

Работа внутренних сил равна . Для замкнутой системы
, а
, гдеи– радиус-векторы частиц.

Учитывая, что силы
и
имеют величину, зависящую только от расстояния и направлены вдоль соединяющей их прямой (это справедливо, например, для сил кулоновского или гравитационного взаимодействий), любую из этих сил можно представить в виде, например,
, гдеf (R 12 ) – некоторая функцияR 12 ,– орт вектора
.

Следовательно,
.

Скалярное произведение
равно приращениюdR 12 расстояния между частицами, тогда
.

Выражение
есть приращение некоторой функции
. Следовательно,

.

Функция
представляет потенциальную энергию взаимодействия.

Работа внутренних сил будет равна

,

т.е. не зависит от пути, по которому перемещаются частицы, а определяется начальной и конечной конфигурациями системы. Т.е. силы взаимодействия вида
являются консервативными.

Итак, работа внутренних сил равна убыли потенциальной энергии взаимодействия

2. Второй член представляет работу внешних сил и равен убыли потенциальной энергии системы во внешнем поле консервативных сил

3. Последний член представляет работу неконсервативных внешних сил
.

После этих замечаний можно записать

Величина

T + U вз. + U вн. = E (3.13)

– называется полной механической энергией системы. Если внешние неконсервативные силы отсутствуют, т.е.
, то

Е=const– закон сохранения механической энергии.

ОПРЕДЕЛЕНИЕ: полная механическая энергия системы тел, на которые действуют лишь консервативные силы, остается постоянной.

Для замкнутой системы, т.е. системы, на тела которой не действуют никакие внешние силы, закон сохранения примет вид:

E = T + U вз. = const

Если в замкнутой системе, кроме консервативных сил действуют неконсервативные силы, например, силы трения, то полная механическая энергия системы не сохраняется. Рассматривая консервативные силы как внешние, получим

или после интегрирования
.

Анализ закона сохранения показывает, что полная энергия, оставаясь в консервативной системе величиной постоянной, может переходить из одних видов в другие.

При действии неконсервативных сил возможен переход механической энергии в другие немеханические виды энергии. В этом случае справедлив более общий закон сохранения:

ОПРЕДЕЛЕНИЕ: в изолированной от любых внешних воздействий системе остается постоянной сумма всех видов энергии (включая и немеханические).

К этому добавим, что в природе и технике постоянно имеют место превращения энергии из одних видов в другие. Проиллюстрируем это таблицей.

Процесс или прибор

Превращение энергии

Электрогенератор

механическая

электрическая

Гальванический элемент

химическая

электрическая

Электродвигатель

электрическая

механическая

Зарядка аккумулятора

электрическая

химическая

Фотосинтез

электромагнитная

химическая

Фотоэффект

электромагнитная

электрическая

Ядерный реактор

механическая

электромагнитная и др.

В

Рис. 3.10

таблице не отражено, что при любом превращении часть энергии превращается в теплоту.

Для графического изображения закона сохранения энергии рассмотрим случай, когда тело бросаем вверх.

Если не учитывать силу сопротивления воздуха F сопр. , то систему «тело-Земля» можно рассматривать, как изолированную и консервативную, для которой

E = E к. + U p. = const

Из графика (рис. 3.10) видно, что по мере поднятия тела над поверхностью Земли его потенциальная энергия возрастает от величины U p (h 1) доU p (h 2), но одновременно с этим точно на такую же величину уменьшается кинетическая энергия системыE к. , а полная энергия тела остается величиной постоянной, что соответствует линииBA||h.

Очевидно:

1. При h=0 имеемU p =0, аE=E к. , что соответствует линии ОВ;

2. При h = max имеем U p = max (E к. = 0), аE=U p , что соответствует линииAC.

САМОСТОЯТЕЛЬНО:

Упругий и неупругий центральный удар шаров;

Условия равновесия механической системы.

> Гравитационная потенциальная энергия

Что такое гравитационная энергия: потенциальная энергия гравитационного взаимодействия, формула для гравитационной энергии и закон всемирного тяготения Ньютона.

Гравитационная энергия – потенциальная энергия, связанная с гравитационной силой.

Задача обучения

  • Вычислить гравитационную потенциальную энергию для двух масс.

Основные пункты

Термины

  • Потенциальная энергия – энергия объекта в его позиции или химическом состоянии.
  • Затон тяготения Ньютона – каждая точечная вселенская масса притягивает другую при помощи силы, выступающей прямо пропорциональной их массам и обратно пропорциональной квадрату их дистанции.
  • Сила тяжести – результирующая сила наземной поверхности, притягивающая объекты к центру. Создается вращением.

Пример

Какой будет гравитационная потенциальная энергия 1-килограммовой книги на высоте в 1 м? Так как положение установлено близко к земной поверхности, то гравитационное ускорение будет постоянным (g = 9.8 м/с 2), а энергия гравитационного потенциала (mgh) достигает 1 кг ⋅ 1 м ⋅ 9.8 м/с 2 . Это можно проследить и в формуле:

Если добавить массу и земной радиус.

Гравитационная энергия отображает собою потенциальную, связанную с силой гравитации, потому что необходимо преодолеть земное притяжение, чтобы выполнить работу над поднятием предметов. Если объект падает от одной точки к другой внутри гравитационного поля, то сила тяжести выполнит положительную работу, а гравитационная потенциальная энергия уменьшится на ту же величину.

Допустим у нас есть книга, оставленная на столе. Когда мы переносим ее с пола на вершину стола, определенное внешнее вмешательство работает против гравитационной силы. Если же она упадет, то это работа гравитации. Поэтому процесс падения отображает потенциальную энергию, ускоряющую массу книгу и трансформирующуюся в кинетическую. Как только книга коснется пола, кинетическая энергия станет теплом и звуком.

На гравитационную потенциальную энергию влияют высота относительно конкретной точки, масса и сила гравитационного поля. Так что книга на столе уступает по гравитационной потенциальной энергии более тяжелой книга, расположенной ниже. Запомните, что высота не может применяться в вычислении гравитационной потенциальной энергии, если гравитация не выступает постоянной.

Локальное приближение

На силу гравитационного поля влияет расположение. Если изменение дистанции незначительное, то им можно пренебречь, а силу тяжести сделать постоянной (g = 9.8 м/с 2). Тогда для вычисления используем простую формулу: W = Fd. Восходящая сила приравнивается к весу, поэтому работа соотносится с mgh, выливающихся в формуле: U = mgh (U – потенциальная энергия, m – масса объекта, g – ускорение силы тяжести, h – высота объекта). Значение выражается в джоулях. Изменение потенциальной энергии передается как

Общая формула

Однако, если мы сталкиваемся с серьезными переменами в дистанции, то g не может оставаться постоянной и приходится применять исчисление и математическое определение работы. Чтобы рассчитать потенциальную энергию, можно интегрировать гравитационную силу относительно дистанции между телами. Тогда получим формулу гравитационной энергии:

U = -G + K, где К – постоянная интегрирования и приравнивается к нулю. Здесь потенциальная энергия превращается в ноль, когда r – бесконечна.

Введение в равномерное круговое движение и гравитацию
Неравномерное круговое движение
Скорость, ускорение и сила
Типы сил в природе
Закон универсальной гравитации Ньютона
Законы Кеплера
Гравитационно потенциальная энергия
Энергосбережение
Угловые и линейные величины

Если в системе действуют только консервативные силы, то можно ввести понятие потенциальной энергии. Пусть тело массой m находит-


ся в гравитационном поле Земли, масса которой M . Сила взаимодей- ствия между ними определяется законом Всемирного тяготения

F (r ) = G Mm ,

где G = 6,6745 (8) × 10–11 м3/(кг× с2) - гравитационная постоянная; r - расстояние между их центрами масс. Подставляя выражение для гра- витационной силы в формулу (3.33), найдем ее работу при переходе тела из точки с радиус-вектором r 1 в точку с радиус-вектором r 2



r 2 dr



A 12 = òdA = òF (r )dr = -GMm òr

= GMm ⎜⎝r



1 r 1 r 1 2 2 1

Представим соотношение (3.34) в виде разности значений

A 12 = U (r 1) – U (r 2), (3.35)



U (r ) = -G Mm + C



для различных значений расстояний r 1 и r 2. В последней формуле C - произвольная константа.

Если тело приближается к Земле, которая считается неподвижной , то r 2 < r 1, 1/ r 2 – 1/ r 1 > 0 и A 12 > 0, U (r 1) > U (r 2). В этом случае сила тя- жести совершает положительную работу. Тело переходит из некото- рого начального состояния, которое характеризуется значением U (r 1) функции (3.36), в конечное, с меньшим значением U (r 2).

Если же тело удаляется от Земли, то r 2 > r 1, 1/ r 2 – 1/ r 1 < 0 и A 12 < 0,

U (r 1) < U (r 2), т. е сила тяготения совершает отрицательную работу.

Функция U = U (r ) является математическим выражением способ- ности гравитационных сил, действующих в системе, совершать ра- боту и согласно данному выше определению представляет собой по- тенциальную энергию.

Отметим, что потенциальная энергия обусловлена взаимным тя- готением тел и является характеристикой системы тел, а не одного тела. Однако при рассмотрении двух или большего числа тел одно из них (обычно Земля) считается неподвижным, а другие движутся от- носительно него. Поэтому часто говорят о потенциальной энергии именно этих тел в поле сил неподвижного тела.


Поскольку в задачах механики представляет интерес не величина потенциальной энергии, а ее изменение, то значение потенциальной энергии можно отсчитывать от любого начального уровня. Послед- нее определяет значение константы в формуле (3.36).

U (r ) = -G Mm .

Пусть нулевой уровень потенциальной энергии соответствует по- верхности Земли, т. е. U (R ) = 0, где R – радиус Земли. Запишем фор- мулу (3.36) для потенциальной энергии при нахождении тела на вы- соте h над ее поверхностью в следующей форме


U (R + h ) = -G Mm

R + h


+ C . (3.37)


Полагая в последней формуле h = 0, имеем

U (R ) = -G Mm + C .

Отсюда найдем значение константы C в формулах (3.36, 3.37)

C = -G Mm .

После подстановки значения константы C в формулу (3.37), имеем


U (R + h ) = -G Mm + G Mm = GMm ⎛- 1


1 ⎞= G Mm h .


R + h R


⎝⎜ R + h R ⎟⎠ R (R + h )


Перепишем эту формулу в виде

U (R + h ) = mgh h ,


где gh


R (R + h )


Ускорение свободного падения тела на высоте


h над поверхностью Земли.

В приближении h « R получаем известное выражение для потен- циальной энергии, если тело находится на небольшой высоте h над поверхностью Земли


Где g = G M


U (h ) = mgh , (3.38)

Ускорение свободного падения тела вблизи Земли.


В выражении (3.38) принята более удобная запись: U (R + h ) = U (h ). Из него видно, что потенциальная энергия равна работе, которую со- вершает гравитационная сила при перемещении тела с высоты h над


Землей на ее поверхность, соответствующую нулевому уровню по- тенциальной энергии. Последнее служит основанием считать выра- жение (3.38) потенциальной энергией тела над поверхностью Земли, говорить о потенциальной энергии тела и исключить из рассмотре- ния второе тело - Землю.

Пусть тело массой m находится на поверхности Земли. Для того чтобы оно оказалось на высоте h над этой поверхностью, к телу не- обходимо приложить внешнюю силу, противоположно направлен- ную силе тяжести и бесконечно мало отличающуюся от нее по мо- дулю. Работа, которую совершит внешняя сила, определяется сле- дующим соотношением:


R + h


R + h dr


⎡1 ⎤R + h

R

Потенциальная энергия гравитационного взаимодействия системы двух материальных точек с массами m и М , находящихся на расстоянии r одна от другой, равна

Ep =G M mr . (11)

где G – гравитационная постоянная, а нуль отсчета потенциальной энергии (Е p = 0) принят при r = ∞.

Потенциальная энергия гравитационного взаимодействия тела массой m с Землей, где h – высота тела над поверхностью Земли, M e – масса Земли, R e – радиус Земли, а нуль отсчета потенциальной энергии выбран при h = 0.

Ee =G Me m hRe ⋅(Re +h ) . (12)

При том же условии выбора нуля отсчета потенциальная энергия гравитационного взаимодействия тела массой m с Землей для малых высот h (h « R e) равна

Ep =m g h ,

где g =G MeR 2e – модуль ускорения свободного падения вблизи поверхности Земли.

    Первая и вторая космические скорости.

Первая космическая скорость

Это скорость физического объекта, с которой он может вращаться вокруг Земли, не падая на нее и не отрываясь в пространство. Первая космическая скорость обеспечивает равновесное положение тела, движущегося по круговой траектории вблизи поверхности Земли. При отсутствии тормозящих факторов такое движение может продолжаться бесконечно долго. При этом масса самого вращающегося объекта значения не имеет, а радиус окружности вращения должен немного превышать радиус Земли.

Первая космическая скорость = 7,91 км/с

Итак, первая космическая скорость эти минимальная линейная скорость объекта, движущегося по окружности вокруг Земли, которая позволяет ему не падать и не улетать в пространство.

Вторая космическая скорость

Это минимальная скорость, при достижении которой объект, движущийся по вращательной орбите вокруг Земли, может преодолеть силу притяжения планеты и улететь в пространство. Её еще называют скоростью убегания.

Вторая космическая скорость также как и первая, определяется радиусом и массой небесного тела. Для каждого небесного тела она своя, для планеты Земля равна 11,18 км/с над поверхностью Земли. Достигнув такой скорости, тело отрывается от притяжения Земли и попадает в гравитационное поле Солнца, становясь его спутником.

Вторая космическая скорость = 11,18 км/с

Это минимальная скорость, при достижении которой объект, движущийся по вращательной орбите вокруг Земли, может преодолеть силу притяжения планеты и улететь в пространство.

    Абсолютно неупругий удар.

Абсолю́тно неупру́гий удар - удар, в результате которого компоненты скоростей тел, нормальные площадке касания, становятся равными. Если удар был центральным (скорости были перпендикулярны касательной плоскости), то тела соединяются и продолжают дальнейшее своё движение как единое тело.

Где v это общая скорость тел, полученная после удара, m a - масса первого тела, u a - скорость первого тела до соударения. m b - масса второго тела, u b -скорость второго тела до соударения. Важно - импульсы являются величинами векторными, поэтому складываются только векторно.

Как и при любом ударе, при этом выполняются закон сохранения импульса и закон сохранения момента импульса , но не выполняется закон сохранения механической энергии . Часть кинетической энергии соударяемых тел в результате неупругих деформаций переходит в тепловую .

Хорошая модель абсолютно неупругого удара - сталкивающиеся пластилиновые шарики

    Абсолютно упругий удар.

Абсолютно упругий удар -модель соударения, при которой полная кинетическая энергия системы сохраняется. В классической механике при этом пренебрегают деформациями тел. Соответственно, считается, что энергия на деформации не теряется, а взаимодействие распространяется по всему телу мгновенно.

Для математического описания простейших абсолютно упругих ударов используется закон сохранения энергии и закон сохранения импульса .

Здесь m 1 , m 2 - массы первого и второго тел. u 1 , v 1 - скорость первого тела до, и после взаимодействия. u 2 , v 2 - скорость второго тела до, и после взаимодействия.

Важно - импульсы складываются векторно, а энергии скалярно.

    Динамика вращательного движения.

Вращательным движением тела вокруг фиксированной оси называют движение, при котором произвольная точка тела, кроме тех, что лежат на оси вращения, движется по окружности в плоскости, перпендикулярной оси вращения, с центром, лежащим на этой оси.

Равноускоренное вращательное движение - это движение по окружности, при котором угловая скорость тела за каждые равные отрезки времени изменяется на одно и тоже значение.

    Момент инерции. Теорема Штейнера о переносе полей

Моме́нт ине́рции - скалярная общем случае - тензорная ) физическая величина , мера инертности во вращательном движении вокруг оси, подобно тому, как масса тела является мерой его инертности в поступательном движении. Характеризуется распределением масс в теле: момент инерции равен сумме произведений элементарных масс на квадрат их расстояний до базового множества (точки, прямой или плоскости).

Единица измерения в Международной системе единиц (СИ) : кг ·м ².

Обозначение: I или J .