История освещения – от древнего огня до современных светодиодов. Да здравствует свет! Или эволюция осветительных приборов История развития искусственных источников света

Без светотени классическая живопись немыслима. С её помощью художники, начиная с эпохи Возрождения, превращали свои картины не просто в красивые изображения - они создавали настоящие тексты, философские трактаты.

Мастерство развивалось годами. Живопись обрела голос, заговорила со зрителями. И как наигранно стали смотреться все картины величайших мастеров на тему кающейся Магдалины, когда своё полотно на этот сюжет создал .

Проживший немало лет в трущобах, художник отлично знал, как выглядит страдающая проститутка, решившая обратится к вере. Его Магдалина действительно такова.

Её глаза опущены, на лице задумчивая скорбь, ведь, решив поменять свою жизнь, человек обращается не к небу, он задает вопрос самому себе. Это уже финал преображения, последствие бури эмоций, о которой свидетельствуют разбросанные по полу дорогие украшения. В этой блуднице нет и тени кокетства. Она полностью одета, в её платье нет ничего вызывающего.

Нет здесь и ни единого классического упоминания о святости. Нет толпы голых младенцев-херувимов, нет креста, нет неба. Перед нами мрачная комната. В мучительном исступлении, похожем на горячку, провела Магдалина всю ночь. И настало утро. Солнечный свет пока еще совсем слаб, его мягкие лучи видны только в правом верхнем углу полотна. Героиня еще не видит их. Это тот переломный момент ее жизни, когда возврат к старому невозможен, а будущее еще совсем не ясно. То самое предчувствие катарсиса, который вот-вот должен случится, когда на блудницу упадет солнечный свет. Она застыла между двумя реальностями. Её прошлое изорванными украшениями валяется на полу, а будущее только приходит к ней. А руки Магдалины? Так мать держит своего ребенка. Перед нами рождение, только не ребенка, а рождение веры.

Но настоящим мастером игры стал Рембрандт ван Рейн. Именно с его картины «Снятие с креста» мы и решили начать свой сериал.


В сериале будет 10 серий. Три из них мы посвятили .

Свет в живописи - это удивительное явление. Оно меняется, развивается, живёт своей жизнью. Свет - это то единственное, что остаётся от художника после его смерти. Свет бессмертен. Ведь тьма - это всего лишь отсутствие света. И даже, если в один момент его нет, он всегда готов пробиться в самые тёмные пространства. Вырвать из мрака то единственное, ради чего стоит жить.

В будущих выпусках мы поговорим об Иване Крамском, Михаиле Врубеле, Николае Ге, Пабло Пикассо, Винсенте ван Гоге. Это только начало пути.

Хотим сказать огромное спасибо сотрудникам Государственного Эрмитажа, без которых этот проект не увидел бы свет. Отдельное спасибо работнику пресс-службы музея Ольге Эбертс, не пожалевшей для нашего фильма ни времени, ни сил.

Современный мир светится яркими красками даже с космоса: космические станции и экипаж на борту могут лицезреть удивительную картину ночью: светящаяся паутина из ярких городских огней. Это – продукт жизнедеятельности человека, его тяжелой умственной изобретательской работы. Нам это сложно представить, но еще каких-нибудь 300 лет назад для освещения улиц и домов люди использовали совершенно невообразимые вещи. Вот об этом я и хочу вам рассказать, об удивительной и интересной истории освещения, начиная от самых примитивных способов и заканчивая современными люстрами, бра, подвесными светильниками и другими приборами, благодаря которым наши дома и квартиры такие уютные.

Древний мир полон загадок и увлекательных уроков, несмотря на то, что у большинства современных людей интерес к нему постепенно отпадает. Что касается освещения, то здесь тоже есть кое-что интересное, ведь первобытные люди не использовали даже обычный огонь. Сначала люди лишь умели его поддерживать: где-нибудь ударит молния, загорится дерево и там может осесть несколько людей, которые будут прилагать усилия для того, чтобы пламя не угасло. Огонь встречается в природе довольно редко, поэтому племена, которым удалось наткнуться на пожар в первобытном лесу – практически везунчики. К сожалению, не установлен точный период, когда люди научились вручную добывать огонь, но большинство ученых сходится во мнении, что это произошло около 10 млн лет назад.

С этого момента, по сути, началась эволюция мысли, так как благодаря огню у человека стало намного больше свободного времени, и жизнь стала комфортней, так как пламя огня даровало тепло у ночного кострища под сенью звезд. Так, возможно, родилась сама философия! Но не будем отклоняться от темы, вернемся к искусственному освещению.

Энергия, рожденная идеей

Как известно, во время реакции горения высвобождается тепловая энергия, и во время этой реакции также выделяются фотоны – частицы света. Экспериментальным путем (так как адекватной теоретической базы еще не было) люди постепенно находили материалы, которые могут долго гореть, высвобождая свет и тепло. Это различные масла, смолистые порода дерева, природные смолы, воск, ворвань (китовый жир) и даже нефть! К слову, греческий огонь, известный в своё время как чрезвычайно грозное оружие, по некоторым версиям представлял собой именно нефть.

Все эти горючие материалы использовались людьми для освещения своих жилищ и улиц – создавались специальные люстры (несколько сосудов, скрепленных в одну систему), бра или крепились к стенке факелы, чтобы осветить комнату. К сожалению, такой способ освещения не является безопасным, и истории известно множество случаев возникновения пожаров, когда кто-то случайно перевернет лампаду или уронит факел на стог сена. Помимо этого, люди рубили много деревьев и охотились на китов, а изобретение электричества в 19 веке всё изменило – китам жить стало немного спокойней (а вот вырубка леса даже ускорилась, но уже по другим причинам).

«Да будет свет», сказал Петров и соединил угольные стержни

В 1802 году русский ученый Петров, являвшийся также профессором физики, проводил в своей лаборатории опыты с помощью построенной им батареи гальванических элементов. Ему удалось соединить два угольных стержня с помощью разных разрядов (положительный и отрицательный). Сблизившись, угли начали разогреваться до температуры, когда начали светиться. После этого он их раздвинул и увидел уникальное явление – яркое изогнутое пламя. Это была первая в мире электрическая дуга. Далее произошел бум, и огромное количество ученых начало заниматься исследованиями в этой области. Так родилась лампа русского ученого Яблочкова, Лодыгина и, наконец, Томаса Эдисона, которого ошибочно считают первым в мире человеком, что изобрел электрическую лампочку. Электрический свет – продукт кропотливой работы множества ученых, среди которых видное место занимает также и сам Эдисон, значительно усовершенствовавший механизм работы лампы накаливания и сумевший существенно продлить её сроки службы.

Современный мир: великие достижения в области освещения

Ассортимент осветительных приборов сегодняшнего дня просто поражает. Это и лампы дневного света, и различные энергосберегающие, а также светодиодные, галогенные, металогалогенные, натриевые и другие виды лампочек. Говорить об изобретении каждой лампочки можно очень долго, но это ни к чему. Современный пользователь без труда может купить светильник с таким типом света, который именно ему будет комфортно наблюдать. Для этого не нужно знать технических деталей, достаточно лишь узнать о преимуществах тех или иных осветительных приборов. Широкое разнообразие осветительных приборов и лампочек открывает огромные возможности в плане декорирования и освещения помещений. Достаточно лишь знать, куда обращаться. вы можете купить качественные осветительные приборы и другое профильное оборудование, причем на самых выгодных условиях. Магазин «Homelight» является официальным представителем компании Philips в Украине, поэтому вы можете приобрести качественную европейскую продукцию на максимально комфортных и выгодных условиях.

Размещено на сайте 08.11.2007.

ПРЕДИСЛОВИЕ КАФЕДРЫ ПРОГНОЗОВ

Добрый день уважаемые читатели!

Программа «патентного пейнтбола», с которой вы познакомились в предшествующих трёх выпусках, будет, разумеется, продолжена. Ещё несколько человек изъявили желание вступить «в войну» и готовят свои материалы. Любой создатель новой теории в ТРИЗ может принять участие в этом эксперименте на «верификацию».

Однако, КП не «журнал про пылесосы», поэтому мы решили поставить сегодня работу «про лампочки». Тема пылесосов, как впрочем, и любых других машин, которые отвечают за ЗДОРОВЬЕ человека - неисчерпаема, хотя бы потому, что в мире Науки постоянно появляются какие-то новые результаты.

Можно с уверенностью сказать, что каждые полгода вполне реально формировать новое прогнозное решение именно на материале научных новинок, рассматривая их с позиции возможности конкретного использования.

Информационную среду постоянно «тралят» как «специалисты по пылесосам», так и профессиональные «поисковики», к числу которых принадлежит и представляемый сегодня автор.. Поэтому будет правильно настроить свои ожидания на то, что «пылесосная тема» будет «всплывать» постоянно, но, конечно, не будет доминирующей.

С удовольствием представляю работу моего коллеги и друга д.т.н., профессора, Мастера ТРИЗ Александра Кынина, который сейчас работает ТРИЗ экспертом в южнокорейской компании Самсунг Электромекеникс. Пять лет оторванности от Родины не сделали этого человека «усталым» или пассивным в совершенствовании исследовательских навыков, что не может не вызывать восхищения.

Можно смело назвать эту статью «краткой энциклопедией истории светильников». Кроме того, это «тренинг распознавания закономерностей», без которых невозможен профессиональный рост прогнозиста. Причём, тренинг очень высокого уровня.

Объём информации в работе велик, поэтому материал будет предъявлен в двух выпусках.

При обсуждении рукописи и подготовке её к публикации возник ряд полемических вопросов и уточнений, которые мы решили вынести в

ПОСЛЕСЛОВИЕ КАФЕДРЫ ПРОГНОЗОВ.

Эти вопросы требуют некоторого осмысления. Кроме того, на них может дать ответ не только автор, но и любой читатель, для которого тема прогнозирования развития технологий важна. Эти вопросы – «заделы» для будущих исследований по теме прогнозирование развития техники.

Приятного чтения,

С уважением, Ведущий рубрики КП,

РАЗВИТИЕ ИСТОЧНИКОВ СВЕТА

А. Кынин

1. ИСТОРИЯ

Светить всегда, светить везде...
В. Маяковский

Человек всегда стремился предугадать будущее. Одной из целей таких попыток является прогнозирование процесса развития Технических Систем (ТС). До сих пор в Теории Решения Изобретательских Задач (ТРИЗ) при описании процессов развития систем преобладают не количественные, а качественные оценки, что затрудняет позиционирование ТРИЗ как научного направления. Целью представленной работы является показать пример реализации Законов Развития Технических Систем (ЗРТС), сформулированных в рамках ТРИЗ для описания развития ТС на примере реальных систем - искусственных Источников Света (ИС). Кроме того, показана возможность их описания кривыми развития и прогнозирования изменения параметров на основе математических моделей.

Классификация источников света

К сожалению, эти ТС, сыгравшие такую важную роль в развитии цивилизации, до сих пор практически не попадали в сферу интересов ТРИЗ - специалистов. Можно привести в пример только раздел в книге Ю.П. Саломатова и книгу Э.А. Соснина в которой рассмотрены только эксилампы.

В данной работе будут подробно рассмотрены только источники, применяемые для освещения помещений, то есть такие источники, которые дают белый свет, либо свет максимально к нему приближенный по спектру.

Как ни странно, но дата появления первого источника света зафиксирована довольно точно. Это, по Византийскому варианту 1 сентября 5509 г. до н. э., когда Бог произнес: «Да будет свет!...». Правда, является ли этот источник света искусственным – вопрос спорный.

Дата появления первых ИС теряется во мраке веков, однако они явно появились не ранее, чем древние люди стали применять огонь, то есть около 500000 г. до Р.Х. (См. Табл. 1). Несомненно, что первоначально огонь использовался для приготовления пищи, пока какому-то древнему изобретателю не понадобилось заглянуть в темную пещеру.

Таблица 1. История развития источников света.

Тип источника излучения

Начало использования огня

500000 г. до н.э.

Масляные лампы и факелы.

10000 г. до н.э.

Горящие камни в Малой Азии.

4000 г. до н.э.

Серийное производство глиняных ламп с маслом.

2500 г. до н.э.

Первые свечи в Греции и Риме.

500 г. до н.э.

Водородные лампы с электрическим зажиганием.

Лампа с сурепным маслом и плоским фитилем.

Лампы на угольном газе В. Мурдоха

Итальянский физик Алессандро Вольта создал первый химический источник тока

Дуга Х. Дэви

Свечение накаленной проволоки из платины или золота.

Дуга В.В. Петрова между угольными стержнями.

Свечение тлеющего разряда в опытах В.В. Петрова.

Первые газовые лампы.

Первые парафиновые свечи.

Дуговая лампа Фуко с ручным регулированием длины дуги

Керосиновая лампа Лукашевича

Немецкий изобретатель Генрих Гебель разработал первую лампочку: обугленную бамбуковую нить в вакуумированном сосуде.

Дуговые лампы с автоматическим регулированием расстояний между углями Александра Шпаковского

Лодыгин получил патент за номером 1619 на нитевую лампу. В качестве нити накала он использовал угольный стержень, помещённый в вакуумированный сосуд.

“свеча” Яблочкова

Джозеф Сван получил в патент на лампу с угольным филаментом. В его лампах филамент находился в разреженной кислородной атмосфере.

Эдисон получает патент на лампу с угольной нитью.

Накаливающийся колпачок Ауэра

Газовые лампы “Газовый Рожок”

Ацетиленовая лампа

Лампа с целлюлозной нитью

Ауэр предлагает лампу с осмиевой спиралью.

Лодыгин продаёт патент на вольфрамовую нить компании General Electric

Купер-Хьюит изобретает ртутную лампу низкого давления.

Кулиджу удалось получить ковкий вольфрам

Лэнгмюр предложил наполнять лампы инертным газом

Газонаполненная лампа Лангье с вольфрамовой спиралью.

Пирани изобретает натриевую лампу низкого давления.

Кух изобретает ртутную дуговую лампу высокого давления.

Ртутная лампа высокого давления с люминофором.

Шульц предлагает ксеноновую лампу.

Первые галогенные лампы накаливания.

Первые ртутные лампы высокого давления с йодистыми добавками.

Натриевые лампы высокого давления.

Безэлектродные серные лампы

Светодиоды белого свечения Nichia

Светодиод Luxeon K2

ИС, как техническая система, имеет ряд отличий от обычных ТС, которые обычно воспринимаются, как аналоги машин. Чтобы правильно найти все части системы сначала определим ее предназначение. Несомненно, предназначением ее является «создавать видимое излучение для освещения объекта». В этом случае продуктом такой системы будет являться свет - т.е. электромагнитное излучение. Излучает свет Рабочий Орган (РО). Снабжается РО от внешнего Источника Энергии (ИЭ) через Трансмиссию (Тр). Если считать функцией двигателя преобразование энергии из одного типа в другой, то в случае лампы накаливания им можно считать спираль (электрическая – тепловая энергия), а в случае люминисцентной лампы – люминофор, преобразующий УФ излучение в видимый свет. Управление человеком обычно ограничивается включением и выключением ТС.

В первую очередь, проанализируем все возможные варианты прямого получения света. Для этого используем таблицу Воздействие - Отклик из для случая электромагнитный отклик в форме электромагнитного излучения (см. Табл.2).

Как видно из приведенной таблицы только магнитное воздействие не приводит непосредственно к генерации света. Естественно, что рассматривать применение очень слабой по интенсивности триболюминесценции, а также гнилушек и светлячков (биолюминисценция) для освещения в данной работе не имеет смысла.

Таблица 2. Генерирование света при внешних воздействиях.

Теперь на основе полученных данных составим таблицу (см. Табл.3), в которой отразим природу и состояние элементов системы.

Таблица 3. Структура источников света.

Таким образом, по ИЭ лампы могут быть условно разделены на: Химические, Электрические и Электромагнитные.

Химические источники света

Первым источником тепла, а заодно и света, является костер, где в качестве топлива используется древесина, или уголь. В этом случае мы имеем ИЭ химической природы. Рабочим органом является раскаленный газ, который образуется в зоне горения при термическом разложении топлива в присутствии кислорода воздуха. Трансмиссией работает сам материал. Потом костер динамизировался и превратился в свой передвижной вариант - факел, а также минимизировался до лучины. Предназначением и костра и факела все-таки было не только освещение, но и генерация тепла. Поэтому первой «лампой» можно назвать именно лучину.

Долгие века такой источник света вполне устраивал людей. Но он был не только слишком громоздким, но и крайне неэффективным источником света. Это обусловлено тем, что значительную часть своей энергии он должен затрачивать на термическое разложение материала - горючего. Кроме того, пользоваться им было крайне неудобно.

Поэтому появились масляные лампы. В них ИЭ служило жидкое масло. Для транспортировки масла из резервуара к зоне горения потребовалось ввести трансмиссию - фитиль. Однако такое изменение конструкции привело к усложнению отношений между людьми, так как потребовалось где-то добывать масло и делать светильники. В дальнейшем, для ИС мы будем использовать термин «лампа».

Следующим этапом явилось изобретение восковой свечи. Как не странно, это устройство может быть помещено между костром и масляной лампой на общей линии развития. Дело в том, что топливо свечи находится в твердом состоянии, но при нагреве плавится и далее транспортируется фитилем к зоне горения.

Затем на долгое время прогресс для ламп сводился к вариациям в конструкции масляных ламп и свечей. Сам процесс развития конструкций тоже представляет значительный интерес, поскольку в ходе изменения в первую очередь росло количество свечей. Если условно считать огонь свечи точечным источником, то он превратился сначала в псевдолинейный (канделябр), круговой (традиционное колесо со свечами в качестве люстры) и объемный (многоярусные люстры дворцов).

Пример объемной геометрической эволюции: точка - линия - поверхность - объем.

В начале ХIХ века появились парафиновые свечей и керосиновые лампы. В действительности, керосиновые лампы появились еще в Средние века. Но новую жизнь в них вдохнул польский изобретатель И. Лукашевич .

Любопытно отметить, что и жидкостные лампы прошли развитие, сходное со свечами. Так обычный шнурок-фитиль (условно точечный ИС) превратился сначала в линейный, а потом в кольцевой (у последних керосиновых ламп).

Пример линейной геометрической эволюции: точка - линия - поверхностная кривая - объемная кривая.

Следующим шагом было изменение источника энергии на газ. В конце XVIII века появились первые водородные лампы с электрическим зажиганием. Однако широкого распространения они не получили по причине сложности и взрывоопасности.

Первая настоящая газовая лампа была создана В. Мурдохом (William Murdoch «Murdock»)). В 1798 году он стал использовать лампы на угольном газе для освещения производственных помещений, а в 1802 году бывший сотрудник этой компании С. Клегг организовал фирму и стал массово внедрять газовое освещение . Следует отметить, что газовые лампы по сути дела являются модернизацией костра. Только в этом случае твердое горючее превращается в газ где-то на коксовом заводе (в надсистеме), и только затем транспортируется потребителю.

Пример перехода в надсистему: уголь в костре – угольный газ на заводе.

Особенно интенсивное развитие газовые рожки получили после изобретения калильных сеток, резко увеличивающих световой поток. В 1885 году Ауэр фон Вельсбах предложил использовать калильную сетку, представляющую собой мешочек из ткани, пропитанный раствором неорганических веществ (различных солей). При прокаливании ткань сгорала, оставляя тонкий «скелет», ярко светящийся при нагревании под действием пламени. Эти устройства получили название колпачки Ауэра .

В принципе, на этом история развития ламп, использующих химическую энергию в качестве ИЭ практически прекратилась, хотя газовое освещение еще долго составляло конкуренцию электрическому (См. Фильм «Газовый свет»). Появление ацетиленовой (карбидной) лампы не повлияло на этот процесс, тем более что она, будучи мобильной системой, использовалась для других целей (в шахтах, в фарах и т.д.). Однако сам переход в такой лампе Твердое - Газ дополняет общую картину.

Пример сегментации: полено (монолит) - разделенный монолит (лучина) - жидкость (масло, керосин) - газ (коксовый газ, ацетилен, пропан).

Необходимо отметить, что вопреки некритичному пониманию ТРИЗ, газовые лампы вовсе не исчезли. Они вернулись к нам сегодня в виде источников света для туристов, причем их характеристики немного выросли.

ЭЛЕКТРИЧЕСКИЕ ИСТОЧНИКИ СВЕТА

Практически параллельно с развитием химических источников света развивались электрические, причем они появились даже немного раньше газовых рожков.

В 1799 году итальянский физик Алессандро Вольта создал первый химический источник тока, который получил название "вольтов столб".

Итак, следующим классом ИС являются электрические, то есть такие устройства, которые используют в качестве ИЭ электричество, причем ИЭ не входит в ТС. Однако из Табл. 3 видно, что они отличаются между собой по виду РО. Основными классами будут являться:

Дуговые лампы, где под действием электрического разряда светится газ между электродами;

Лампы накаливания, у которых свет излучает нагретая нить;

Газосветные лампы, где используется тлеющий разряд, который формируется при низком давлении газа и малом токе;

Безэлектродные лампы (СВЧ);

Светодиоды.

Пример замены принципа действия ИЭ: Химический - Электрический - Электромагнитный.

Дуговые лампы

Сначала начали развиваться системы, которые использовали электрическую дугу. Наблюдали это явление одновременно Х. Дэви в Англии и В. Петров в России, что в очередной раз подтверждает неизбежность изобретений . Интересно отметить, что и горение электрической дуги и свечение раскаленной проволоки под действием тока наблюдались в один и тот же год.

Рис. 1. Ртутные лампы высокого давления с люминофором.

Однако только через 42 года французский физик Фуко создал первую дуговую лампу с ручным регулированием длины дуги, которая нашла достаточно широкое применение. Однако ручное регулирование было крайне неудобным и в дни коронационных торжеств в Москве на башнях Кремля зажглись дуговые лампы с автоматическим регулированием расстояний между углями - детище изобретателя Александра Шпаковского (Не путать с Николаем!) .

Вскоре Павел Яблочков усовершенствовал конструкцию, поставив электроды вертикально и разделив их слоем изолятора. Такая конструкция получила название «свеча Яблочкова» и использовалась во всем мире: например, с помощью таких «свечей» освещался Парижский оперный театр .

Пример повышения управляемости: Дуга Петрова (неуправляемая) - Фонарь Фуко (ручное управление) - Дуговая лампа Шпаковского (автоматическое регулирование) – «Свеча Яблочкова» (саморегулирование).

Дуговые лампы были, хотя и яркими, но не очень экономичными, поэтому вскоре свое триумфальное шествие начали лампы накаливания. Однако, дуговые лампы вовсе не исчезли, а заняли свою, вполне определенную нишу, что еще раз заставляет усомниться в выводах о «смерти ТС».

Основной проблемой оставалось быстрое сгорание электродов. Не раз у изобретателей являлась мысль заключить вольтову дугу в лишенную кислорода атмосферу. Ведь благодаря этому лампа могла бы гореть значительно дольше. Американец Джандус первый придумал помещать под купол не всю лампу, а только ее электроды. При возникновении вольтовой дуги кислород, заключенный в сосуде, быстро вступал в реакцию с раскаленным углеродом, так что вскоре внутри сосуда образовывалась нейтральная атмосфера. Хотя кислород и продолжал поступать через зазоры, влияние его сильно ослаблялось, и такая лампа могла непрерывно гореть около 200 часов .

От использования вакуума вскоре перешли к использованию инертных газов. Сейчас в качестве источников особо яркого света используются ртутные (См. Рис.1) и ксеноновые дуговые газоразрядные лампы.

Пример использования принципа инертной среды.

В большинстве газоразрядных ламп используется излучение положительного столба дугового разряда, в импульсных лампах искровой разряд, переходящий в дуговой. Существуют лампы дугового разряда с низким [от 0,133 н/м 2 (10-3 мм рт. ст.)], например натриевая лампа низкого давления, высоким (от 0,2 до 15 ат,1 ат= 98066,5 н/м 2) и сверхвысоким (от 20 до 100 ат и более, например ксеноновые газоразрядные лампы) давлением .

Цвет получаемого света зависит от вещества, пары которого находятся в лампе. Сравнительные характеристики газоразрядных ламп представлены в Табл. 4.

Таблица 4. Сравнительные характеристики дуговых ламп.

Натриевая лампа низкого давления характеризуется максимальной эффективностью среди всех источников света - около 200 лм/Вт.

Лампы накаливания (См. Рис. 2)

Рис. 2. Лампы накаливания.

Обычно историю лампочек накаливания связывается с именем Эдисона. Однако, первым, кто разработал первую лампочку, использовав обугленную бамбуковую нить в вакуумированном сосуде был немецкий изобретатель Генрих Гебель. Его соотечественник химик Герман Спренгел повторил это в 1865 году. А потом последовал целый водопад исследований. В Великобритании это были, Cruto, Gobel, Farmer, Maxim, Lane-Fox, Sawyer и Mann. Первый канадский патент был представлен Генри Вудварду и Мэтью 24 июля 1874. Наиболее известными оказались лампочки Лодыгина и Свана .

Хотя Эдисон не изобрел электрическую лампу накаливания, он, тем не менее, перенес теорию в практику и был первым, кто успешно освоил рынок освещения лампами накаливания. Самая главная заслуга Эдисона заключается в том, что он создал всю инфраструктуру для их использования, что и принесло, в конечном итоге, коммерческий успех.

Серьезным недостатком ламп накаливания был слишком короткий срок их работы. Это было вызвано быстрым разрушением нити в атмосфере кислорода. Поэтому, развитие ламп накаливания шло по двум направлениям:

Улучшение характеристик нити

Изменение атмосферы в лампе.

Улучшение характеристик нити шло по направлению повышения термостойкости материала. Первоначально использовались различные угли на основе бамбука, хлопка и т.д. К концу XIX века светоотдача таких лампочек составляла 3 люмен/ватт. Затем стали использовать различные тугоплавкие материалы. Так Ауэр предлагает лампу с осмиевой спиралью (Т пл = 2700 o С), пытались использовать тантал с температурой плавления 2996 o С эффективность которого в лампах составляла 7 люмен/ватт, а ряд изобретателей, в том числе Лодыгин, пытались применять для этих целей вольфрам. Однако только после того, как Кулиджу удалось получить ковкий вольфрам лампочки накаливания уверенно обошли газовые рожки и дуговые лампы.

И до сих пор, несмотря ни на что, лампы накаливания пока еще составляют большую часть используемых в мире ИС.

Галогенные лампы накаливания (См. Рис.3)


Рис. 3. Линейные 2-цокольные галогенные лампы накаливания.

Серьезным шагом в развитии ламп накаливания явилось открытие галогенного цикла. Еще в 1949 году фирма OSRAM подала заявку на выдачу патента на галогенные лампы накаливания. Однако настоящий технический прорыв произошел только в 1959 году на фирме General Electric. Название этих ламп объясняется использованием в них галогенов (солей), йода или брома в качестве газов-наполнителей. Галогенный цикл в лампе предотвращает осаждение испарившегося со спирали накаливания вольфрама на внутренние стенки колбы, что обычно происходит у обычной лампы накаливания в течение ее срока службы. Во время работы лампы вольфрам и галоген соединяются, и испарившийся вольфрам осаждается на спираль. Галоген внутри лампы действует как чистильщик окон, поэтому колба лампы остается прозрачной.

Галогенные лампы накаливания, как и обычные лампы накаливания, излучают тепло, однако их рабочая температура составляет около 2800 o С. В результате этого они излучают более белый свет, имеют более высокую световую отдачу - до 25 люменов/Ватт и более длительный срок службы, составляющий от 2000 до 4000 часов .

Газоразрядные лампы

Газоразрядные лампы являются родственниками дуговых. Это большое семейство ламп, в которых разряд происходит между электродами в атмосфере какого-либо газа, или пара. Разряд вызывает ионизацию газа, то есть возникает плазма, которая и является РО системы. Однако, в отличии от дуговых, в газоразрядной лампе используется «тлеющий» разряд. В результате, температура и энергопотребление таких ламп существенно ниже.

Газовый разряд в газах вызывают излучение видимого света, спектр которого зависит от использованного газа.

Таблица 5. Цвета тлеющих разрядов в различных газах .


Рис. 4. Линейные люминесцентные лампы.

Самым распространенным примером таких ламп является люминисцентные лампы «дневного света» (См. Рис. 4), где излучателем света являются пары ртути. При этом генерируется УФ излучение, которое преобразовывается люминофором в видимый свет.

Пример использования принципа посредника.

Люминесцентные лампы накаливания обеспечивают световую отдачу от 30-50 лм/Вт. Они имеют довольно большой срок службы, до 20000 часов .

Компактные люминесцентные лампы (См. Рис. 5)

Рис. 5. Компактные люминесцентные лампы.

Основная особенность устройства компактных люминесцентных ламп (КЛЛ) состоит в придании различными способами разрядной трубке таких форм, которые бы обеспечили резкое снижение длины лампы. Кроме того, большинство маломощных ламп, предназначенных для замены ламп накаливания, устроены таким образом, что могут непосредственно или через адаптер ввёртываться в резьбовой патрон.

Пример использования надсистемных ресурсов.

Со времен изобретения первой угольной лампы накаливания прошло около 180 лет. Революция в мире освещения того времени уже давно осталась позади и мало кто задумывается, как все начиналось. Со временем технологии менялись: лампу с угольной спиралью сменила лампа накаливания с платиновой спиралью, затем лампа с обугленной бамбуковой нитью в вакуумированном сосуде и великое множество других модификаций ламп. Каких только материалов не было испробовано для создания более эффективной лампы накаливания, однако это не принесло существенных результатов. В современных лампах накаливания используется спираль из вольфрама, но и этот редкий материал позволяет добиться, что всего 5% энергии преобразуется в свет. Глобальный переворот пришелся лишь на эпоху энергосберегающих и светодиодных ламп. Основанные на совершенно ином принципе свечения, данные лампы позволили человечеству в разы улучшить качество освещения и сократить на него расходы.

Давайте же попробуем отследить всю историю источников света и существующие в наше время типы ламп.

В наши дни все лампы можно поделить на три основные группы: накаливания, газоразрядные и светодиодные. Люди «старой закалки» наотрез отвергают последние два вида, что напрасно. Но пойдем по порядку.

Лампы накаливания

Лампа накаливания представляет собой электрический источник света, светящимся телом которого служит проводник, нагреваемый протеканием электрического тока до высокой температуры. Все лампы накаливания можно разделить на пять видов:

К преимуществам ламп накаливания можно отнести их низкую стоимость, небольшие размеры, мгновенность включения, отсутствие токсичных компонентов, работа при низкой температуре окружающей среды. Но их недостатки, все же, не сопоставимы с современными требованиями к источникам света. К ним относятся: низкая эффективность (КПД не более 5%), короткий срок службы, резкая зависимость световой отдачи и срока службы от напряжения, цветовая температура в пределах от 2300 до 2900 К, высокая пожароопасность.

Лампы накаливания постепенно остаются в прошлом, но отдадим должное истории, проложившей тропу от истоков к современным источникам освещения:



1838-1854 гг. — первые лампы, работающие от электрического тока. Изобретатели: бельгиец Жобар, англичанин Деларю, немец Генрих Гебель.

11 июля 1874 года российский инженер Александр Николаевич Лодыгин получил патент на нитевую лампу. В качестве нити накала он использовал угольный стержень, помещённый в вакуумированный сосуд.

В 1876 году российский изобретатель и предприниматель Павел Николаевич Яблочков разработал электрическую свечу и получил на неё французский патент. Свеча Яблочкова оказалась проще, удобнее и дешевле в эксплуатации, чем угольная лампа Лодыгина. Изобретение Яблочкова можно отнести также к разрядным лампам.


В 1879 году американский изобретатель Томас Эдисон патентует лампу с платиновой нитью. В 1880 году он возвращается к угольному волокну и создаёт лампу с временем жизни 40 часов. Одновременно Эдисон изобрёл патрон, цоколь и выключатель. Несмотря на столь непродолжительное время жизни его лампы вытесняют использовавшееся до тех пор газовое освещение.


В 1904 году венгры Д-р Шандор Юст и Франьо Ханаман получили патент на использование в лампах вольфрамовой нити. В Венгрии же были произведены первые такие лампы, вышедшие на рынок через венгерскую фирму Tungsram в 1905 году.

В 1906 году Лодыгин продаёт патент на вольфрамовую нить компании General Electric. Из-за высокой стоимости вольфрама патент находит только ограниченное применение.

В 1910 году Вильям Дэвид Кулидж изобретает улучшенный метод производства вольфрамовой нити. Впоследствии вольфрамовая нить вытесняет все другие виды нитей.

Остающаяся проблема с быстрым испарением нити в вакууме была решена американским учёным Ирвингом Ленгмюром, который, работая с 1909 года в фирме General Electric, придумал наполнять колбы ламп инертным газом, что существенно увеличило время жизни ламп.


Газоразрядные лампы

Опыты по созданию свечения в заполненных газом трубках начались в 1856 году. Свечение большей частью было в невидимом диапазоне спектра. И лишь в 1926 году Эдмунд Джермер предложил увеличить операционное давление в пределах колбы и покрывать колбы флуоресцентным порошком, который преобразовывает ультрафиолетовый свет, испускаемый возбуждённой плазмой, в однородный белый свет. В результате, началась эпоха газоразрядных ламп.

В настоящее время Э.Джермер признан как изобретатель лампы дневного света. General Electric позже купила патент Джермера, и к 1938 году довела лампы дневного света до широкого коммерческого использования.

1927-1933 гг. - венгерский физик Дэнис Габор, работая в компании Siemens&Halske AG (сегодня компания Siemens), разработал ртутную лампу высокого давления, которая сегодня повсеместно используется в уличном освещении.

Серьезный вклад в совершенствование флуоресцентного порошка, позже названного люминофором, сделал в 30-х годах прошлого века советский физик Сергей Иванович Вавилов.

1961 год - создание первых натриевых ламп высокого давления. В конце 70-х годов прошлого века компания General Electric первой выпустила на рынок натриевые лампы, а немного позже и металлогалогенные.

В начале 80-х годов появились первые компактные люминесцентные лампы (КЛЛ).

В 1985 году компания OSRAM первой представила лампу со встроенным электронным ПРА.

Все многообразие газоразрядных ламп можно представить следующей схемой:

Самые популярные из этой группы, пожалуй, компактные люминесцентные лампы. Они позволяют экономить электроэнергию до 5 раз по сравнению с лампами накаливания, при этом срок их службы составляет около 8 лет. Корпус данной лампы нагревается в незначительной степени, что позволяет использовать их повсеместно. Кроме того, люминесцентные лампы могут иметь различные цветовые температуры и различные варианты внешнего вида.

Но, к сожалению, КЛЛ обладают несколькими недостатками, к которым относятся:

  • Значительное снижение срока службы при работе в сетях с перепадами напряжения, а также при частых включениях и выключениях.
  • Спектр такой лампы - линейчатый. Это приводит не только к неправильной цветопередаче, но и к повышенной усталости глаз.
  • Компактные люминесцентные лампы содержат 3-5 мг ртути.
  • Использование выключателей с подсветкой приводит к периодическому, раз в несколько секунд, кратковременному зажиганию ламп (в качественных лампах невидимому для глаз), что приводит к скорому выходу из строя лампы.
  • Обычные компактные люминесцентные лампы несовместимы с диммерами. Стоимость диммируемых ламп примерно в 2 раза выше.

По этим причинам вопрос о новых технологиях при изготовлении источников света оставался открытым. В свет широко шагнули светодиодные лампы.

Светодиодные лампы

Светодиодные источники света основаны на эффекте свечения полупроводников (диодов) при пропускании через них электрического тока. Малые размеры, экономичность и долговечность позволяют изготавливать на основе светодиодов любые световые приборы. В наши дни светодиоды занимают значительную долю рынка источников света и используются повсеместно.

Первое сообщение об излучении света твёрдотельным диодом было сделано в 1907 году британским экспериментатором Генри Раундом из Marconi Company. Примечательно, что эта компания впоследствии стала частью General Electric и существует по сей день.

В 1923 году Олег Владимирович Лосев в Нижегородской радиолаборатории показал, что свечение диода возникает вблизи p-n-перехода. Полученные им два авторских свидетельства на «Световое реле» (первое заявлено в феврале 1927 г.) формально закрепили за Россией приоритет в области светодиодов, утраченный в 1960-гг. в пользу США после изобретения современных светодиодов, пригодных к практическому применению.

В 1961 году Роберт Байард и Гари Питтман из компании Texas Instruments открыли и запатентовали технологию инфракрасного светодиода.

В 1962 году Ник Холоньяк в компании General Electric разработал первый в мире практически применимый светодиод, работающий в световом (красном) диапазоне.

В 1972 году Джордж Крафорд (студент Ника Холоньяка), изобрёл первый в мире жёлтый светодиод и улучшил яркость красных и красно-оранжевых светодиодов в 10 раз.

В 1976 году Т. Пирсол создал первый в мире высокоэффективный светодиод высокой яркости для телекоммуникационных применений, изобретя полупроводниковые материалы, специально адаптированные к передачам через оптические волокна.

Светодиоды оставались чрезвычайно дорогими вплоть до 1968 года (около $200 за штуку). Компания Monsanto была первой, организовавшей массовое производство светодиодов, работающих в диапазоне видимого света и применимых в индикаторах.

Компании Hewlett-Packard удалось использовать светодиоды в своих ранних массовых карманных калькуляторах.

К преимуществам светодиодных ламп можно отнести:


Основные недостатки светодиодов в первую очередь связаны с их высокой стоимостью. Так, например, отношение цена/люмен у сверхъярких светодиодов в 50-100 раз больше, чем у обычной лампы накаливания. Помимо этого можно выделить еще два момента:

  • Светодиоду необходим постоянный номинальный рабочий ток. Из-за этого появляются дополнительные электронные узлы, повышающие себестоимость системы освещения в целом.
  • Относительно низкая предельная температура: мощные осветительные светодиоды требуют внешнего радиатора для охлаждения, потому что имеют конструкционно неблагоприятное соотношение своих размеров к выделяемой тепловой мощности (они слишком маленькие) и не могут рассеять столько тепла, сколько выделяют (несмотря даже на более высокий КПД, чем у ламп прочих видов).

На сегодняшний день специалисты сходятся во мнении, что за светодиодами ближайшее будущее в освещении. Более эффективной и практичной технологии в настоящее время не существует.

Учитывая возрастающую потребность человечества в искусственном освещении можно предположить, что появятся и новые, более эффективные технологии. Но придут они уже на замену светодиодов, которые в ближайшие годы станут такой же обыденностью как когда лампы-то накаливания.

ГООУ «Таловская школа-интернат для детей - сирот и

детей, оставшихся без попечения родителей»

ТВОРЧЕСКИЙ ПРОЕКТ

«ЭВОЛЮЦИЯ ОГНЯ КАК ИСТОЧНИКА СВЕТА»

Чесноков Николай.

Руководитель:

учитель технологии

2. Древнее время. От лучины до свечи

3. Появление электрических источников света

4. Типы источников света

5. Обоснование выбора темы проекта

6. Технология изготовления

7. Применение изделия

8. Экономический расчет

9. Технологическая карта

10. Приложения

1. История развития источника света. 1 сентября" href="/text/category/1_sentyabrya/" rel="bookmark">1 сентября 5509 г. до н. э., когда Бог произнес: «Да будет свет!...». Правда, является ли этот источник света искусственным – вопрос спорный.

Дата появления первых источников света теряется во мраке веков, однако они явно появились не ранее, чем древние люди стали применять огонь, то есть около 500000 г. до Р. Х. (См. Табл. 1). Несомненно, что первоначально огонь использовался для приготовления пищи, пока какому-то древнему изобретателю не понадобилось заглянуть в темную пещеру.

Таблица 1. История развития источников света.

Тип источника излучения

Начало использования огня

500000 г. до н. э.

Масляные лампы и факелы.

10000 г. до н. э.

Горящие камни в Малой Азии.

4000 г. до н. э.

Серийное производство глиняных ламп с маслом.

2500 г. до н. э.

Первые свечи в Греции и Риме.

500 г. до н. э.

Водородные лампы с электрическим зажиганием.

Лампа с сурепным маслом и плоским фитилем.

Лампы на угольном газе В. Мурдоха

Итал. физик Алессандро Вольта создал первый химический источник тока

Дуга Х. Дэви

Свечение накаленной проволоки из платины или золота.

Дуга между угольными стержнями.

Свечение тлеющего разряда в опытах.

Первые газовые лампы.

Первые парафиновые свечи.

Дуговая лампа Фуко с ручным регулированием длины дуги

Керосиновая лампа Лукашевича

Немецкий изобретатель Генрих Гебель разработал первую лампочку: обугленную бамбуковую нить в вакуумированном сосуде.

Дуговые лампы с автоматическим регулированием расстояний между углями Александра Шпаковского

Лодыгин получил патент за номером 1619 на нитевую лампу. В качестве нити накала он использовал угольный стержень в вакуумированном сосуд.

“свеча” Яблочкова

Джозеф Сван получил в патент на лампу с угольным филаментом. В его лампах филамент находился в разреженной кислородной атмосфере.

Эдисон получает патент на лампу с угольной нитью.

Накаливающийся колпачок Ауэра

Газовые лампы “Газовый Рожок”

Ацетиленовая лампа

Лампа с целлюлозной нитью

Ауэр предлагает лампу с осмиевой спиралью.

Лодыгин продаёт патент на вольфрамовую нить компании General Electric

Купер-Хьюит изобретает ртутную лампу низкого давления.

Кулиджу удалось получить ковкий вольфрам

Лэнгмюр предложил наполнять лампы инертным газом

Газонаполненная лампа Лангье с вольфрамовой спиралью.

Пирани изобретает натриевую лампу низкого давления.

Кух изобретает ртутную дуговую лампу высокого давления.

Ртутная лампа высокого давления с люминофором.

Шульц предлагает ксеноновую лампу.

T8 линейная, с электронным балластом

T5 линейная

Светодиод

белый светодиод

Прототип светодиода

Дуговая лампа

Ксеноновые газоразрядные лампы

Дуговые ртутные металлогалогенные лампы

Газоразрядная лампа

Натриевая лампа высокого давления

Натриевая лампа низкого давления

Лампа на галогенидах металлов

1400Вт Серная лампа

Теоретически

возможно

Первые в истории свечи - это чаши, наполненные жиром, с фитилём или щепочкой. Первые восковые свечи появились в Средневековье. Свечи долгое время были очень дороги. Чтобы осветить большое помещение, требовались сотни свечей, они чадили, черня потолки и стены.

Масляная лампа - светильник, работающий на основе сгорания масла. Принцип действия схож с принципом действия керосиновой лампы: в некую ёмкость заливается масло, туда опускается фитиль - верёвка, состоящая из растительных или искусственных волокон, по которым, согласно свойству капиллярного эффекта масло поднимается наверх. Второй конец фитиля, закреплённый над маслом, поджигается, и масло, поднимаясь по фитилю, горит. Масляная лампа применялась издревле. В древние времена масляные лампы вылепляли из глины, или изготовляли из меди. В арабской сказке «Аладдин» из сборника «Тысяча и одна ночь» в медной лампе живёт Джинн.

Керосиновая лампа - светильник на основе сгорания керосина - продукта перегонки нефти. Принцип действия лампы примерно такой же, что и у масляной лампы: в ёмкость заливается керосин, опускается фитиль. Другой конец фитиля зажат поднимающим механизмом в горелке, сконструированной таким образом, чтобы воздух подтекал снизу. В отличие от масляной лампы, у керосиновой фитиль плетёный. Сверху горелки устанавливается ламповое стекло - для обеспечения тяги, а так же для защиты пламени от ветра. Первая керосиновая лампа была описана Ар-Рази в Багдаде IX века. Современная керосиновая лампа была изобретена аптекарями Игнатием Лукасевичем и Яном Зехом в 1853 году во Львове.

Лампа накаливания общего назначения (230 В, 60 Вт, 720 лм, цоколь E27, габаритная высота ок. 110 мм Лампа накаливания (ЛН) - электрический источник света, светящимся телом которого служит так называемое тело накала (ТН, проводник, нагреваемый протеканием электрического тока до высокой температуры). В качестве материала для изготовления ТН в настоящее время применяется практически исключительно вольфрам и сплавы на его основе. В конце XIX - первой половине XX в. ТН изготавливалось из более доступного и простого в обработке материала - углеродного волокна.

Токарные станки" href="/text/category/tokarnie_stanki/" rel="bookmark">токарном станке . В дополнение к токарным изделиям я решил продублировать каждый источник света сюжетами быта, выполненными в технике выжигания по дереву. Все изделия были объединены на одной подставке, позволяющей каждый экспонат рассматривать в отдельности.

Использование изделия.

Мое изделие можно использовать в качестве наглядного пособия на урока истории, физики, природоведения , а также на внеклассных мероприятиях и различных выставках.

ТЕХНОЛОГИЯ ИЗГОТОВЛЕНИЯ И ПРИМЕНЯЕМЫЕ МАТАРИАЛЫ.

Подставка для макета изготовлена из ламинированного ДСП, применяющегося при производстве мебели, с последующей оклейкой торцов ламинированной кромкой.

Точение макетов источников света выполнено на токарном станке по дереву СТД-120 из березовых заготовок, стандартным набором резцов.

Выжигание бытовых сюжетов я сделал на фанере толщиной 3 мм, при помощи электровыжигателя.

Для электрического светильника использованы готовые электрические детали: патрон, плафон, кабель, штепсельная вилка, электрокабель.

Сборка всех деталей макета выполнена при помощи клея, гвоздей, саморезов.

Отделка деталей произведена мебельным лаком в два слоя, с промежуточной шлифовкой.

Перед работой мною была разработана инструкционная карта, определяющая порядок работы над изделием.

ИНСТРУКЦИОННАЯ КАРТА

ЭКОНОМИЧЕСКИЙ РАСЧЕТ

На изготовление макета источников света было израсходовано:

Материалы:

Брус березовый-0.019 м3 по цене 4270 рублей за м3;

Ламинированного ДСП-1 м2 по цене 270 рублей м2:

Фанеры-0.86 м2 по цене 248 рублей м2 на общую сумму 565 рублей.

Отделочные материалы:

Лак 120грамм на сумму 96 рублей;

Кромка ламинированная на 65 рублей/метр;

Шлифовальная бумага на сумму 113 руб.. Итого: 274 рубля.

Электродетали мы в расчет не включаем, так как они были взяты от старого светильника.

Общее количество электроэнергии , затраченной при изготовлении макета, составило 47.6 Квт/час на сумму 176 рублей. Из них на точение 3.9 Квт/ч, выжигание 0,5 Квт/ч, освещение 43,2 Квт/ч.

Общая стоимость изделия составила 1015 рублей.

Литература

1. СЕТЬ ИНТЕРНЕТ

2. «Как солнце в дом вошло»

3. Журналы «Школа и производство»

4. «Токарные работы с древесиной»

Приложения