Энергия электрического поля системы взаимодействующих зарядов. Энергия взаимодействия электрических зарядов. Потенциальная энергия взаимодействия зарядов

В пределах электростатики невозможно дать ответ на вопрос, где сосредоточена энергия конденсатора. Поля и заряды, их образовавшие, не могут существовать обособленно. Их не разделить. Однако переменные поля могут существовать независимо от возбуждавших их зарядов (излучение солнца, радиоволны, …), и они переносят энергию. Эти факты заставляют признать, что носителем энергии является электростатическое поле .

При перемещении электрических зарядов силы кулоновского взаимодействия совершают определенную работу dА . Работа, совершенная системой, определяется убылью энергии взаимодействия -dW зарядов

. (5.5.1)

Энергия взаимодействия двух точечных зарядов q 1 и q 2 , находящихся на расстоянии r 12 , численно равна работе по перемещению заряда q 1 в поле неподвижного заряда q 2 из точки с потенциалом в точку с потенциалом :

. (5.5.2)

Удобно записать энергию взаимодействия двух зарядов в симметричной форме

. (5.5.3)

Для системы из n точечных зарядов (рис. 5.14) в силу принципа суперпозиции для потенциала, в точке нахождения k -го заряда, можно записать:

Здесь φ k , i - потенциал i -го заряда в точке расположения k -го заряда. В сумме исключен потенциал φ k , k , т.е. не учитывается воздействие заряда самого на себя, равное для точечного заряда бесконечности.

Тогда взаимная энергия системы n зарядов равна:

(5.5.4)

Данная формула справедлива лишь в случае, если расстояние между зарядами заметно превосходит размеры самих зарядов.

Рассчитаем энергию заряженного конденсатора. Конденсатор состоит из двух, первоначально незаряженных, пластин. Будем постепенно отнимать у нижней пластины заряд dq и переносить его на верхнюю пластину (рис. 5.15).

В результате между пластинами возникнет разность потенциалов При переносе каждой порции заряда совершается элементарная работа

Воспользовавшись определением емкости получаем

Общая работа, затраченная на увеличение заряда пластин конденсатора от 0 до q , равна:

Эту энергию можно также записать в виде

Пусть два точечных заряда q 1 и q 2 находятся в вакууме на расстоянии r друг от друга. Можно показать, что потенциальная энергия их взаимодействия даётся формулой:

W = kq 1 q 2 /r (3)

Мы принимаем формулу (3) без доказательства. Две особенности данной формулы следует обсудить.

Во-первых, где находится нулевой уровень потенциальной энергии? Ведь потенциальная энергия, как видно из формулы (3), в нуль обратиться не может. Но на самом деле нулевой уровень существует, и находится он на бесконечности. Иными словами, когда заряды расположены бесконечно далеко друг от друга, потенциальная энергия их взаимодействия полагается равной нулю (что логично - в этом случае заряды уже «не взаимодействуют»). Во-вторых, q 1 и q 2 - это снова алгебраические величины зарядов, т.е. заряды с учётом их знака.

Например, потенциальная энергия взаимодействия двух одноимённых зарядов будет положительной. Почему? Если мы отпустим их, они начнут разгоняться и удаляться друг от друга.

Их кинетическая энергия возрастает, стало быть потенциальная энергия - убывает. Но на бесконечности потенциальная энергия обращается в нуль, а раз она убывает к нулю, значит - она является положительной.

А вот потенциальная энергия взаимодействия разноимённых зарядов оказывается отрицательной. Действительно, давайте удалим их на очень большое расстояние друг от друга - так что потенциальная энергия равна нулю - и отпустим. Заряды начнут разгоняться, сближаясь, и потенциальная энергия снова убывает. Но если она была нулём, то куда ей убывать? Только в сторону отрицательных значений.

Формула (3) помогает также вычислить потенциальную энергию системы зарядов, если число зарядов больше двух. Для этого нужно просуммировать энергии каждой пары зарядов. Мы не будем выписывать общую формулу; лучше проиллюстрируем сказанное простым примером, изображённым на рис. 8

Рис. 8.

Если заряды q 1 , q 2 , q 3 находятся в вершинах треугольника со сторонами a, b, c, то потенциальная энергия их взаимодействия равна:

W = kq 1 q 2 /a + kq 2 q 3 /b + kq 1 q 3 /c

Потенциал

Из формулы W = - qEx мы видим, что потенциальная энергия заряда q в однородном поле прямо пропорциональна этому заряду. То же самое мы видим из формулы W = kq 1 q 2 /r потенциальная энергия заряда q 1 , находящегося в поле точечного заряда q 2 , прямо пропорциональна величине заряда q 1 . Оказывается, это общий факт: потенциальная энергия W заряда q в любом электростатическом поле прямо пропорциональна величине q:

Величина ц уже не зависит от заряда, является характеристикой поля и называется потенциалом:

Так, потенциал однородного поля E в точке с абсциссой x равен:

Напомним, что ось X совпадает с линией напряжённости поля. Мы видим, что с ростом x потенциал убывает. Иными словами, вектор напряжённости поля указывает направление убывания потенциала. Для потенциала поля точечного заряда q на расстоянии r от него имеем:

Единицей измерения потенциала служит хорошо известный вам вольт. Из формулы (5) мы видим, что В = Дж / Кл.

Итак, теперь у нас есть две характеристики поля: силовая (напряжённость) и энергетическая (потенциал). У каждой из них имеются свои преимущества и недостатки. Какую именно характеристику удобнее использовать - зависит от конкретной задачи.

Силы взаимодействия электрических зарядов консервативны, следовательно, система электрических зарядов обладает потенциальной энергией.

Пусть даны два точечных неподвижных заряда q 1 и q 2 , находящиеся на расстоянии r друг от друга. Каждый из зарядов в поле другого заряда обладает потенциальной энергией

; , (4.1)

где j 1,2 и j 2,1 – соответственно потенциалы, создаваемые зарядом q 2 в точке нахождения заряда q 1 и зарядом q 1 в точке нахождения заряда q 2 .

, а . (4.3)

Следовательно,

. (4.4)

Для того чтобы в уравнение энергии системы оба заряда входили симметрично, выражение (4.4) можно записать в виде

. (4.5)

Добавляя к системе зарядов последовательно заряды q 3 , q 4 и т.д., можно убедиться, что в случае N зарядов потенциальная энергия системы

, (4.6)

где j i – потенциал создаваемый в точке нахождения q i всеми зарядами, кроме i - го.

При непрерывном распределении зарядов в элементарном объеме dV находится заряд dq = r×dV. Для определения энергии взаимодействия заряда dq можно применить формулу (4.6), перейдя в ней от суммы к интегралу:

, (4.7)

где j – потенциал в точке элемента объема dV.

Надо отметить, что между формулами (4.6) и (4.7) существует принципиальное различие. Формула (4.6) учитывает только энергию взаимодействия между точечными зарядами, но не учитывает энергии взаимодействия элементов заряда каждого из точечных зарядов между собой (собственную энергию точечного заряда). Формула (4.7) учитывает как энергию взаимодействия между точечными зарядами, так и собственную энергию этих зарядов. При расчете энергии взаимодействия точечных зарядов она сводится к интегралам по объему V i точечных зарядов:

, (4.8)

где j i - потенциал в любой точке объема i-го точечного заряда;

j i = j i ¢ + j i с, (4.9)

где j i ¢ - потенциал, созданный другими точечными зарядами в этой же точке;

j i с – потенциал, созданный частями i-го точечного заряда в данной точке.

Так как точечные заряды можно представить сферически симметричными, то

(4.10)

где W ¢ определяется по формуле (4.6).

Значение собственной энергии зарядов зависит от законов распределения зарядов и от величины зарядов. Например, при равномерном сферическом распределении зарядов с поверхностной плотностью s

.

Следовательно,

. (4.11)

Из формулы (4.11) видно, что при R®0 величина W с ®¥. Это означает, что собственная энергия точечного заряда равна бесконечности. Это приводит к серьезным недостаткам понятия "точечный заряд".

Таким образом, формулу (4.6) можно применять для анализа взаимодействия точечных зарядов, поскольку она не содержит их собственной энергии. Формула (4.7) для непрерывного распределения заряда учитывает всю энергию взаимодействия, поэтому является более общей.

При наличии поверхностных зарядов вид формулы (4.7) несколько изменяется. Подынтегральное выражение этой формулы равно и имеет смысл потенциальной энергии, которой обладает элемент заряда dq, находясь в точке с потенциалом j. Эта потенциальная энергия не зависит от того, является ли dq элементом объемного или поверхностного заряда. Поэтому для поверхностного распределения dq = s×dS. Следовательно, для энергии поля поверхностных зарядов

1) Электростатические силы взаимо­действия консервативны, следовательно, система зарядов обладает потенци­альной энергией.

Найдем потенциальную энергию системы двух неподвижных точеч­ных зарядов Q 1 и Q 2 , находящихся на расстоянии r друг от друга. Каждый из этих зарядов в поле другого обладает потенциальной энергией:

где j 12 и j 21 - соответственно потенциалы, создаваемые зарядом Q 2 в точке нахожде­ния заряда Q 1 и зарядом Q 1 в точке нахождения заряда Q 2 .

(33)

поэтому W 1 = W 2 = W и

Добавляя к системе из двух зарядов последовательно зарядыQ 3 , Q 4 , ... , можно убедиться в том, что в случае n неподвижных зарядов энергия взаимодействия системы точечных зарядов равна

(35)

где j i - потенциал, создаваемый в той точке, где находится заряд Q i , всеми зарядами, кроме i -го.

2) Пусть имеется уединенный провод­ник, заряд, емкость и потенциал которого соответственно равны: Q, С, j. Увеличим заряд этого проводника на dQ. Для этого необходимо перенести заряд dQ из бесконеч­ности на уединенный проводник, затратив на это работу, равную

Чтобы зарядить тело от нулевого потенциала до j, необходимо совершить работу

(37)

Энергия заряженного проводника равна той работе, которую необходимо совер­шить, чтобы зарядить этот проводник:

Потенциал проводника во всех его точках одинаков, так как поверхность проводника является эквипотенциальной. Пола­гая потенциал проводника равным j, найдем:

(39)

где - заряд проводника.

26. Энергия заряженного конденсатора . Как всякий заряженный проводник, конден­сатор обладает энергией, которая в соответствии с формулой (95.3) равна

где Q - заряд конденсатора, С - его емкость, Dj - разность потенциалов между обкладками конденсатора.

27. Объемная плотность энергии электростатического поля. Преобразуем формулу (40), выражающую энергию плоского конденсатора посредством зарядов и потенциалов и воспользовав­шись выражением для емкости плоского конденсатора (C=e 0 eS/d ) и разности потенци­алов между его обкладками (Dj =Ed ), получим:

(41)

где V= Sd - объем конденсатора. Формула (41) показывает, что энергия конден­сатора выражается через величину, характеризующую электростатическое поле, - на­пряженность Е.

Объемная плотность энергии электростатического поля (энергия единицы объема)

(42)

Формулы (40) и (42) соответственно связывают энергию конденсатора с зарядом на его обкладках и с напряженностью поля.

· сила тока I (служит количественной мерой электрического тока)- скалярная физи­ческая величина, определяемая электрическим зарядом, проходящим через поперечное сечение проводника в единицу времени:

· плотность тока - физическая величина, определяемая силой тока, проходящего через единицу площа­ди поперечного сечения проводника, перпендикулярного направлению тока

- вектор , ориентированный по направлению тока (т.е. направление вектора j совпадает с направлением упорядоченного движения положительных зарядов.

Единица плотности тока - ампер на метр в квадрате (А/м 2).

Сила тока сквозь произвольную поверхность S определяется как поток вектора j , т. е.

· Выражение для плотности тока через среднюю скорость носителей тока и их концентрацию

За время dt через площадку dS пройдут заряды, отстоящие от нее не дальше чем на vdt (выражение для расстояния между зарядами и площадкой через скорость)

Заряд dq, прошедший за dt через dS

где q 0 - заряд одного носителя; n - число зарядов в единице объема (т.е их

концентрация): dS·v·dt - объем.

отсюда, выражение для плотности тока через среднюю скорость носителей тока и их концентрациюимеет следующий вид:

· постоянный ток – ток, сила и направление которого не изменяются со времени.

Где q - электрический заряд, проходящий за время t через поперечное сечение провод­ника. Единила силы тока - ампер (А).

· сторонние силы и ЭДС источника тока

сторонние силы - силы неэлектростатического происхождения, действующие на заряды со стороны источников тока.

Сторонние силы совершают работу по перемещению электрических зарядов.

Эти силы имеют электромагнитную природу:

и их работа по переносу пробного заряда q пропорциональна q:

· Физи­ческая величина, определяемая работой, совершаемой сторонними силами при переме­щении единичного положительного заряда, называется электродвижущей силой (э.д.с.), действующей в цепи:

где е называют электродвижущей силой источника тока. Знак «+» соответствует случаю, когда при движении источник проходит в направлении действия сторонних сил (от отрицательной обкладки к положительной), «-» - противоположному случаю

· Закон Ома для участка цепи

· Электрическое сопротивление

R – сопротивление проводника.

Единица сопротивления – Ом.

Для однородного проводника длиной l и сечением S:

ρ - удельное сопротивление

· Закон Ома для замкнутой цепи

Если электрическая цепь замкнута, то выбранные точки 1 и 2 со­впадают, j 1 =j 2 ; тогда получаем закон Ома для замкнутой цепи:

· Закон Ома в локальной форме

Закон Ома для элементарного объема проводника.

Обозначим величину, обратную плотности, где - удельная проводимость.

Получим закон Ома в дифференциальной форме

· Удельное сопротивление (см. пункт 31)

Закон Джоуля - Ленца в дифференциальной форме

Рисунок 6

Количество тепла, выделяемое в элементарном объеме с сопротивлением R при прохождении тока I в течение времени dt:

- закон Джоуля - Ленца.

Найдем плотность мощности:

Количество теплоты, выделяющееся за единицу времени в единице объема, называется удельной тепловой мощностью тока.

Она равна

Закон Джоуля - Ленца в дифференциальной форме.

Сила, действующая на электрический заряд, движущийся в магнитном поле со скоростью, называется силой Лоренца и выражается формулой


Вращающий момент сил, можно определить с.о.:

Вращающий момент сил зависит как от свойств поля в данной точке, так и от свойств рамки и определяется формулой

где - вектор магнитного момента рамки с током ( -вектор магнитной индукции, количественная характеристика магнитного поля). Для плоского контура с током I

где S - площадь поверхности контура (рамки) ,

n - единичный вектор нормали к по­верхности рамки.

Магнитная индукция в данной точке однородного магнитного поля определяется максимальным вращающим моментом, действующим на рамку с магнитным моментом, равным единице, когда нормаль к рамке перпендикулярна направлению поля.

[B] – Тл (Тесла) .

Магнитное поле является силовым, следовательно, его можно изображать, с помощью линий магнитной индукции - линий, касательные к которым в каждой точке совпадают с направлением вектора В.

Свойства линий магнитной индукции:

 замкнуты, т.к. в природе нет магнитных зарядов;

 вектор В направлен по касательной к линии магнитной индукции;

 густота линий магнитной индукции пропорциональна модулю вектора В.

Движение заряженных частиц в магнитном поле

Выражение для силы Лоренца позволяет найти ряд закономерностей движения заряженных частиц в магнитном поле. Направление силы Лоренца и направление вызываемого ею отклонения заряженной частицы в магнитном поле зависят от знака заряда частицы. На этом основано определение знака заряда частиц, движущихся в магнитных полях.

Для вывода общих закономерностей будем считать, что магнитное поле однородно и на частицы электрические поля не действуют. Если заряженная частица движется в магнитном поле со скоростью v вдоль линий магнитной индукции, то угол a между векторами v и В равен 0 или p. Тогда по формуле (32) сила Лоренца равна нулю, т. е. магнитное поле на частицу не действует и она движется равномерно и прямолинейно.

Вектор скорости параллелен вектору магнитной индукции (рис.9)

Рисунок 9

Частица движется равномерно и прямолинейно, вдоль магнитного поля.

Если заряженная частица движется в магнитном поле со скоростью v , перпен­дикулярной вектору В , то сила Лоренца постоянна по модулю и нормальна к траектории частицы. Согласно второму закону Ньютона, эта сила создает центро­стремительное ускорение. Отсюда следует, что частица будет двигаться по окружности (рис.2).

Рисунок 2

Линии индукции направлены за чертеж, В = const. Ускорение

Нормальное ускорение.

Частица движется по окружности такого радиуса:

Время одного полного оборота:

т. е. период вращения частицы в однородном магнитном поле определяется только величиной, обратной удельному заряду (q/m ) частицы, и магнитной индукцией поля, но не зависит от ее скорости (при v< На этом основано действие циклических ускорителей заряженных частиц.

Если скорость v заряженной частицы направлена под углом a к вектору В (рис. 1), то ее движение можно представить в виде суперпозиции: 1) равномерного прямолиней­ного движения вдоль поля со скоростью v || =v cosa ; 2) равномерного движения со скоростью v ^ =v sina по окружности в плоскости, перпендикулярной полю.

плоскости, перпендикулярной полю.

Радиус окружности определяется формулой (34) (в данном случае надо заменить v на v ^ =v sina ). В результате сложения обоих движений возникает движение по спирали, ось которой параллельна магнитному полю (рис. 1). Шаг винтовой линии

Подставив в последнее выражение (35), получим

Направление, в котором закручивается спираль, зависит от знака заряда частицы.

Если скорость заряженной частицы составляет угол a с направлением векто­ра В неоднородного магнитного поля, индукция которого возрастает в направлении движения частицы, то r и h уменьшаются с ростом В. На этом основана фокусировка заряженных частиц в магнитном поле .

(Краткие теоретические сведения)

Энергия взаимодействия точечных зарядов

Энергия взаимодействия системы точечных зарядов равна работе внешних сил по созданию данной системы (см. рис.1) посредством медленного (квазистатического) перемещения зарядов из бесконечно удаленных друг от друга точек в заданные положения. Эта энергия зависит только от конечной конфигурации системы, но не от способа, каким эта система была создана.

Основываясь на таком определении, можно получить следующую формулу для энергии взаимодействия двух точечных зарядов, расположенных в вакууме на расстоянии r 12 друг от друга:

. (1)

Если система содержит три неподвижных точечных заряда, то энергия их взаимодействия равна сумме энергий всех парных взаимодействий:

где r 12 – расстояние между первым и вторым, r 13 - между первым и третьим, r 23 – между вторым и третьим зарядами. Аналогично вычисляется электрическая энергия взаимодействия системы из N точечных зарядов:

Например, для системы из 4-х зарядов формула (2) содержит 6 слагаемых.

Электрическая энергия заряженных проводников

Электрическая энергия уединенного заряженного проводника равна работе, которую нужно совершить, чтобы нанести на проводник данный заряд, медленно перемещая его бесконечно малыми порциями из бесконечности, где изначально эти порции заряда не взаимодействовали. Электрическую энергию уединенного проводника можно вычислить по формуле

, (3)

где q – заряд проводника,  - его потенциал. В частности, если заряженный проводник имеет форму шара и расположен в вакууме, то его потенциал
и, как следует из (3), электрическая энергия равна

,

где R – радиус шара, q – его заряд.

Аналогично определяется электрическая энергия нескольких заряженных проводников – она равна работе внешних сил по нанесению данных зарядов на проводники. Для электрической энергии системы из N заряженных проводников можно получить формулу:

, (4)

где и - заряд и потенциал - го проводника. Заметим, что формулы (3), (4) справедливы и в том случае, когда заряженные проводники находятся не в вакууме, а в изотропном нейтральном диэлектрике.

При помощи (4) вычислим электрическую энергию заряженного конденсатора . Обозначив заряд положительной обкладки q , ее потенциал  1 , а потенциал отрицательной обкладки  2 , получим:

,

где
- напряжение на конденсаторе. Учитывая, что
, формулу для энергии конденсатора можно представить также в виде

, (5)

где C – емкость конденсатора.

Собственная электрическая энергия и энергия взаимодействия

Рассмотрим электрическую энергию двух проводящих шаров, радиусы которых R 1 , R 2 , а заряды q 1 , q 2 . Будем считать, что шары расположены в вакууме на большом по сравнению с их радиусами расстоянии l друг от друга. В этом случае расстояние от центра одного шара до любой точки поверхности другого примерно равно l и потенциалы шаров можно выразить формулами:

,
.

Электрическую энергию системы найдем при помощи (4):

.

Первое слагаемое в полученной формуле – энергия взаимодействия зарядов, расположенных на первом шаре. Эту энергию называют собственной электрической энергией (первого шара). Аналогично, второе слагаемое – собственная электрическая энергия второго шара. Последнее слагаемое – энергия взаимодействия зарядов первого шара с зарядами второго.

При
электрическая энергия взаимодействия существенно меньше суммы собственных энергий шаров, однако при изменении расстояния между шарами собственные энергии остаются практически постоянными и изменение полной электрической энергии примерно равно изменению энергии взаимодействия. Этот вывод справедлив не только для проводящих шаров, но и для заряженных тел произвольной формы, расположенных на большом расстоянии друг от друга: приращение электрической энергии системы равно приращению энергии взаимодействия заряженных тел системы:
. Энергия взаимодействия
удаленных друг от друга тел не зависит от их формы и определяется формулой (2).

При выводе формул (1), (2) каждый из точечных зарядов рассматривался как нечто целое и неизменное. Учитывалась только работа, совершаемая при сближении таких неизменных зарядов, но не на их образование. Напротив, при выводе формул (3), (4) учитывалась также работа, совершаемая при нанесении зарядов q i на каждое из тел системы путем переноса электричества бесконечно малыми порциями из бесконечно удаленных точек. Поэтому формулы (3), (4) определяют полную электрическую энергию системы зарядов, а формулы (1), (2) только электрическую энергию взаимодействия точечных зарядов.

Объемная плотность энергии электрического поля

Электрическую энергию плоского конденсатора можно выразить через напряженность поля между его обкладками:

,

где
- объем пространства, занятого полем, S – площадь обкладок, d – расстояние между ними. Оказывается, через напряженность можно выразить электрическую энергию и произвольной системы заряженных проводников и диэлектриков:

, (5)

,

а интегрирование проводится по всему пространству, занятому полем (предполагается, что диэлектрик изотропный и
). Величина w представляет собой электрическую энергию, приходящуюся на единицу объема. Вид формулы (5) дает основания предположить, что электрическая энергия заключена не во взаимодействующих зарядах, а в их электрическом поле, заполняющем пространство. В рамках электростатики это предположение проверить экспериментально или обосновать теоретически невозможно, однако рассмотрение переменных электрических и магнитных полей позволяет удостоверится в правильности такой полевой интерпретации формулы (5).