Ускоренные заряженные частицы. Ускорители заряженных частиц. Формирование пучка и его инжекция

В зависимости от траектории движения частиц в ускорительной камере, ускорители подразделяются на линейные (траектория – прямая линия) и циклические (траектория близка к окружности или спирали).

По характеру ускоряющего поля различают нерезонансные и резонансные ускорители. В свою очередь нерезонансные подразделяются на индукционные и высоковольтные.

Наиболее просты высоковольтные , в которых энергия поля передается частицам непосредственно в результате ускорения в постоянном электрическом поле с определенной разностью потенциалов. Время действия ускоряющего поля значительно превышает время пролета ускоряющего промежутка. Такие ускорители позволяют достигать энергии частиц до 1 МэВ, а траектория их движения прямолинейна.

В индукционных ускорителях ускорение осуществляется вихревым электрическим полем, и они бывают линейными и циклическими.

Гораздо большую энергию позволяют получать резонансные ускорители. В них энергию частицы получают от высокочастотного поля при многократном прохождении ими ускоряющего промежутка. При этом необходимо, чтобы при прохождении ускоряющего промежутка поле было направлено в сторону движения частиц, а их ускорение происходит в резонанс с изменением ускоряющего поля. В этом случае ускоряющее напряжение относительно невелико. В современных линейных ускорителях резонансного типа электроны разгоняются до энергии до 20 ГэВ, протоны – до 800 МэВ, ионы – до 15 МэВ. Большую энергию частицы получают в циклических резонансных ускорителях.

Для ускорения ионов могут использоваться так называемые коллективные ускорители, в которых ионы приобретают энергию в поле электронного пучка, который, в свою очередь, ускоряется внешним электрическим полем.

В линейных ускорителях частота ускоряющего поля постоянна. При этом резонансные линейные ускорители подразделяются на ускорители с бегущей волной и стоячей волной.

Все циклические ускорители, за исключением бетатрона, являются резонансными. Ускорители электронов – бетатрон, микротрон, синхротрон, ускорители тяжелых частиц – циклотрон, фазотрон, синхрофазотрон.

Бетатрон – электроны двигаются по кольцевым орбитам и ускоряются вихревым электрическим полем. Энергия 100 - 300 МэВ.

Микротрон (электронный циклотрон) – резонансный циклический ускоритель непрерывного действия, в котором и управляющее магнитное поле, и частота ускоряющего электрического поля постоянны во времени. Энергия электронов около 30 МэВ. Часто он используется в качестве источника электронов в синхротронах.

Синхроторон – ускоритель, в котором управляющее магнитное поле изменяется во времени, а частота ускоряющего электрического поля постоянна. Электроны двигаются по кольцевым орбитам с энергией 6-12 ГэВ.



Циклотрон – ускоритель протонов и др. тяжелых частиц. В них управляющее магнитное поле и частота ускоряющего электрического поля постоянны во времени. Частицы двигаются по плоской развертывающейся спирали. Работают в непрерывном режиме. Энергия частиц 0,5 – 1 ГэВ.

Фазотрон (синхроциклотрон) – магнитное поле постоянно во времени, а частота электрического поля постоянно уменьшается. Тяжелые частицы движутся по спирали от центра вакуумной камеры, где расположен источник, к периферии. Энергия частиц около 1 ГэВ.

Синхрофазотрон – магнитное поле и частота электрического поля изменяются одновременно (синхронно). Применяются для ускорения частиц до энергии 10 – 3000 ГэВ.

УСКОРИТЕЛИ ЗАРЯЖЕННЫХ ЧАСТИЦ
Accelerators

Ускорители заряженных частиц – установки для ускорения заряженных частиц до энергий, при которых они могут использоваться для физических исследований, в промышленности и медицине. При сравнительно низких энергиях ускоренные частицы используют, например, для получения изображения на экране телевизора или электронного микроскопа, генерации рентгеновских лучей (электронно-лучевые трубки), разрушения раковых клеток, уничтожения бактерий. При ускорении заряженных частиц до энергий, превышающих 1 мегаэлектронвольт (МэВ) их используют для изучения структуры микрообъектов (например, атомных ядер) и природы фундаментальных сил. В этом случае ускорители заряженных частиц выполняют роль источников пробных частиц, зондирующих изучаемый объект.

Роль ускорителя в современном физическом эксперименте поясняется рисунком. Коллимированный пучок пробных частиц от ускорителя направляют на исследуемую тонкую мишень, содержащую, например, ядра какого-либо химического элемента, и рассеянные мишенью пробные частицы или другие продукты их взаимодействия с ядрами мишени регистрируют детектором или системой детекторов. Анализ результатов эксперимента даёт сведения о природе взаимодействия и структуре исследуемого объекта.
Необходимость использования ускорителей для исследования таких микрообъектов как атомные ядра и элементарные частицы обусловлена следующим. Во-первых, атомные ядра и элементарные частицы занимают малые области пространства (R < 10 -12 см), и проникновение в эти области требует высокой разрешающей способности (а значит и энергии) зондирующего пучка, обеспечивающей взаимодействие отдельной пробной частицы с отдельным микрообъектом. Во-вторых, чем меньше микрообъект, тем он прочнее и проведение экспериментов с перестройкой или разрушением внутренней структуры такого объекта также требует всё большей энергии.
Зная размеры изучаемого объекта, легко оценить энергию пробных частиц, необходимую, для его изучения. Частицы обладают волновыми свойствами. Длина волны частицы зависит от её импульса р и даётся формулой де Бройля

Здесь h – постоянная Планка, а 1 Фм = 10 -13 см. Приведённая формула даёт также связь между длиной волны релятивистской частицы и её кинетической энергией Е в мегаэлектронвольтах.
В эксперименте по рассеянию структура объекта становится “видимой” (посредством, например, дифракции дебройлевских волн), если длина волны де Бройля сравнима или меньше размера (радиуса) объекта R, т.е. при λ < R. При использовании в качестве зондирующих частиц электронов внутрь ядра можно “заглянуть”, если энергия электрона будет превышать 100 МэВ. Для наблюдения структуры нуклона энергия электрона должна уже исчисляться гигаэлектронвольтами (1 ГэВ = 10 9 эВ).
Ускорители различаются типом ускоряемых частиц, характеристиками пучка (энергией, интенсивностью и др.), а также конструкцией. Наиболее распространены ускорители электронов и протонов, поскольку пучки этих частиц проще всего приготовить. В современных ускорителях, предназначенных для изучения элементарных частиц, могут ускоряться античастицы (позитроны, антипротоны), и для увеличения эффективности использования энергии частиц их пучки в ряде установок, называемых коллайдерами, после завершения ускорительного цикла сталкиваются (встречные пучки).
Любой ускоритель конструктивно состоит из трёх частей – системы, где “изготавливаются” ускоряемые частицы (инжектор), ускорительной системы, где низкоэнергичные частицы от инжектора (обычно сформированные в виде локализованных в пространстве сгустков) увеличивают в высоком вакууме энергию до проектной, и системы транспортировки (вывода) пучка к экспериментальной установке.
Условно, с точки зрения траектории, по которой частицы двигаются в процессе ускорения, ускорители можно разбить на два класса – линейные (и прямого действия) и циклические. В линейных ускорителях частицы в процессе ускорения двигаются прямолинейно, а в циклических – либо по одной и той же замкнутой траектории, многократно проходя одни и те же ускоряющие промежутки (синхротроны), либо по траектории, напоминающей раскручивающуюся спираль (циклотроны, микротроны, фазотроны).

По дисциплине

«Концепции современного естествознания»

на тему «Ускорители элементарных частиц»


1. Введение………………………………………………………………………….3

2. Современные ускорители заряженных частиц………………………………...4

3. Научные центры по исследованию элементарных частиц……………………7

4. Циклический ускоритель………………………………………………………15

5. Лазерный ускоритель на биениях……………………………………………..16

6. Заключение……………………………………………………………………..20

7. Список используемой литературы……………………………………………21


Введение

В настоящее время широкое применение в науке и технике нашли ускорители заряженных частиц – установки для получения пучков заряженных частиц (протонов, электронов, античастиц, ядер других атомов) высоких энергий – от десятков кэВ (10 3 эВ) до нескольких ТэВ (10 12 эВ). В технике такие ускорители используются для получения изотопов, упрочнения поверхностей материалов и производства новых материалов, для создания источников электромагнитного излучения (от микроволнового до рентгеновского излучения), широко применяются в медицине и т.д. Однако, по-прежнему, к числу основных областей применения ускорителей относятся ядерная физика и физика высоких энергий. Современные ускорители заряженных частиц – главные источники информации для физиков, изучающих вещество, энергию, пространство и время. Подавляющее большинство элементарных частиц, известных сегодня, не встречаются в естественных условиях на Земле и получены на ускорителях. Именно потребности физики элементарных частиц являются главным стимулом для развития ускорительной техники, и в первую очередь для повышения энергии, до которой могут быть ускорены заряженные частицы.

Современные ускорители заряженных частиц.

В современной физике высоких энергий используются ускорительные установки двух типов. Традиционная схема эксперимента на укорителе такова: пучок заряженных частиц ускоряется до максимально возможной энергии и затем направляется на неподвижную мишень, при столкновении с частицами которой рождается множество элементарных частиц. Измерения параметров рождающихся частиц дают богатейшую экспериментальную информацию, необходимую для проверки (или создания) современной теории элементарных частиц. Эффективность реакции определяется энергией сталкивающейся с мишенью частицы в системе центра масс. Согласно теории относительности при неподвижной мишени и одинаковых массах покоя сталкивающихся частиц энергия реакций

Где E – энергия налетающей на мишень частицы, m 0 – ее масса, c – скорость света. Так, при соударении с неподвижной мишенью протона, ускоренного до энергии 1000 ГэВ, только энергия 42 ГэВ идет на рождение новых частиц, а большая часть энергии расходуется на кинетическую энергию частиц, родившихся в результате реакции.

Предложенные в конце 60-х годов XX века ускорители на встречных пучках (коллайдеры), в которых реакция осуществляется при столкновении встречных ускоренных пучков заряженных частиц (электронов и позитронов, протонов и антипротонов и др.) дают существенный выигрыш в энергии реакции. В коллайдерах энергия реакций равна сумме энергий сталкивающихся частиц

E 1 + E 2 , то есть при равных энергиях частиц выигрыш составляет 2E/m 0 c 2 . Разумеется, эффективность коллайдера оказывается более низкой, чем ускорителя с неподвижной мишенью, так как частицы двух разреженных пучков сталкиваются между собой гораздо реже, чем частицы пучка и плотной мишени. Тем не менее, основная тенденция физики высоких энергий – это продвижение во все более высокие энергии, и большинство крупнейших ускорителей сегодня – это коллайдеры, в которых ради достижения рекордных энергий жертвуют числом столкновений.

Современные ускорители заряженных частиц являются самыми крупными экспериментальными установками в мире, причем энергия частиц в ускорителе линейно связана с его размером. Так, линейный ускоритель электронов SLC на энергию 50 ГэВ в Стэнфордском университете (США) имеет длину 3 км, периметр протонного синхротрона Тэватрон на энергию 900 ГэВ в лаборатории им. Э.Ферми (Батавия, США) составляет 6,3 км, а длина сооружаемого в Серпухове кольца, ускорительно-накопительного комплекса УНК, рассчитанного на энергию3 ТэВ, сооружаемый в 27-километровомускорительном тоннеле европейской организации ядерных исследований (ЦЕРН) в Женеве.

Постоянно возрастающие размеры ускорителей уже достигли границы разумного соотношения физических характеристик и финансовых затрат, превращая строительство ускорителей в проблему национального масштаба. Можно говорить, что чисто инженерные решения тоже близки к своему пределу. Очевидно, что дальнейший прогресс в ускорительной технике должен быть связан с поисками новых подходов и физических решений, делающих ускорители компактнее и дешевле в сооружении и эксплуатации. Последнее также немаловажно, так как энергопотребление современных ускорителей близко к энергопотреблению небольшого города. Прикладная ускорительная наука формулирует перед современной физикой интересную и чрезвычайно важную проблему. Нужно обратиться к новым достижениям в радиофизике, физики плазмы, квантовой электронике и физике твердого тела, чтобы найти достойные решения.

Наиболее многообещающими является поиск способов увеличения темпа ускорения частиц. В современных ускорителях темп ускорения частиц ограничен максимальной напряженностью ускоряющего электрического поля, которое можно создать в вакуумных системах. Эта величина не превышает сегодня 50МВ/м. В более сильных полях возникают явления электрического пробоя на стенках резонатора и образование плазмы, поглощающей энергию поля и препятствующей ускорению частиц. В действительности величина максимально допустимого высокочастотного поля зависит от его длины волны. Современные ускорители используют электрические поля с длиной волны больше 10 см. Например, переход к длине волны 1 см позволит увеличить максимально допустимые электрические поля в несколько раз и тем самым уменьшить размеры ускорителя. Разумеется, для реализации этого преимущества необходима разработка в этом диапазоне сверхмощных источников излучения, способных генерировать импульсы электромагнитных волн с мощностью в сотни МВт и длительностью импульса короче 100 нс. Это представляет собой крупную научно-техническую проблему, решением который заняты многие исследовательские центры мира.

Другой возможный путь – это отказ от традиционных вакуумных микроволновых резонансных систем и использование лазерного излучения для ускорения заряженных частиц. С помощью современных лазеров возможно создание электрических полей с напряженностью, намного превышающей предельные поля в микроволновом диапазоне. Однако непосредственное использование лазерного излучения в вакууме не позволяет достичь эффекта заметного ускорения заряженных частиц из-за невозможности резонансного черенковского взаимодействия волны с частицей, так как скорость света в вакууме всегда больше скорости частицы. В последние годы активно изучаются методы ускорения заряженных частиц лазерным излучением в газах и плазме, причем, поскольку в сильных электрических полях происходит ионизация вещества и образование плазмы, в конечном счете, речь идет об ускорении заряженных частиц интенсивным лазерным излучением в плазме.


Научные центры по исследованию элементарных частиц

Институт физики высоких энергий (ИФВЭ)

Основой для создания института явилось строительство в Протвино, расположенном вблизи подмосковного города Серпухова, самого крупного в мире (вплоть до 1972 г.) кольцевого протонного синхротрона. Собранная в этом научном центре уникальная экспериментальная техника дает возможность ученым проникнуть в глубины строения материи, понять и раскрыть неизвестные человеку законы бесконечно разнообразного и таинственного мира элементарных частиц.

Ускоритель пущен в октябре 1967 г. В этом ускорителе первоначально протоны образуются в результате газового разряда, затем ускоряются электрическим полем высоковольтного импульса трансформатора до энергии 760 КэВ и попадают в линейный ускоритель – инжектор, где предварительно ускоряются до энергии 100МэВ, и затем поступают в кольцо основного ускорителя. В нем уже протоны ускоряются до энергии 76 ГэВ. Число протонов в одном импульсе ускорителя – 3·10 12 . Повторение импульсов происходит через каждые 7 сек. Ускоритель имеет в диаметре 472 м. Вес электромагнитов 20 тыс. т.Потребляемая ускорителем мощность 100 МВт. Ежегодно для физических исследований ускоритель работает 3000 - 4000 час.

Научный центр имеет насыпь, под которой находится ускорительное кольцо, и экспериментальный зал. Эксперименты в ИФВЭ осуществляются как на внутренней мишени ускорителя, так и на выведенных пучках частиц.

Лишь отклоняет частицу, не изменяя её энергии, и задаёт орбиту, по которой движутся частицы.

Ускорители можно принципиально разделить на две большие группы. Это линейные ускорители , где пучок частиц однократно проходит ускоряющие промежутки, и циклические ускорители , в которых пучки движутся по замкнутым кривым типа окружностей, проходя ускоряющие промежутки по многу раз. Можно также классифицировать ускорители по назначению: коллайдеры, источники нейтронов, бустеры, источники синхротронного излучения, установки для терапии рака, промышленные ускорители.

Конструкции ускорителей

Высоковольтный ускоритель (ускоритель прямого действия)

Основная статья : Высоковольтный ускоритель

Ускоритель заряженных частиц (электронов) в котором ускорение заряженных частиц происходит электрическим полем, неизменным или слабо меняющимся в течение всего времени ускорения частиц. Важное преимущество В.У. по сравнению с др. типами ускорителей – возможность получения малого разброса по энергии частиц, ускоряемых в постоянном во времени и однородном электрическом поле. Данный тип ускорителей характеризуется высоким КПД (до 95%) и возможностью создания установок большой мощности (500кВт и выше) что весьма важно при использовании ускорителей в промышленных целях.

Электростатический ускоритель

Идеологически наиболее простой, линейный ускоритель. Частицы ускоряются постоянным электрическим полем и движутся прямолинейно по вакуумной камере, вдоль которой расположены ускоряющие электроды.

Разновидности:

  • Ускоритель Ван де Граафа. генератором Ван де Граафа , основанном на механическом переносе зарядов диэлектрической лентой. Максимальные электрические напряжения ~20МВ определяют максимальную энергию частиц ~20МэВ.
  • Каскадный ускоритель. Ускоряющее напряжение создаётся каскадным генератором , который создаёт постоянное ускоряющее высокое напряжение ~5 МВ преобразуя низкое переменное напряжение по схеме диодного умножителя.

Линейные ускорители электронов небольших энергий часто используются, как часть самых разных электровакуумных приборов (электронно-лучевая трубка , кинескоп , рентгеновская трубка и др.).

Циклотрон

Устройство циклотрона. 1 - место поступления частиц, 2 - траектория их движения, 3 - электроды, 4 - источник переменного напряжения. Магнитное поле направлено перпендикулярно плоскости рисунка.

Идея циклотрона проста. Между двумя полукруглыми полыми электродами, т. н. дуантами , приложено переменное электрическое напряжение. Дуанты помещены между полюсами электромагнита, создающего постоянное магнитное поле. Частица, вращаясь по окружности в магнитном поле, ускоряется на каждом обороте электрическим полем в щели между дуантами. Для этого необходимо, чтобы частота изменения полярности напряжения на дуантах была равна частоте обращения частицы. Иными словами, циклотрон является резонансным ускорителем . Понятно, что с увеличением энергии, на каждом обороте, радиус траектории частицы будет увеличиваться, пока она не выйдет за пределы дуантов.

Циклотрон - первый из циклических ускорителей. Впервые был разработан и построен в году Лоуренсом , за что ему была присуждена Нобелевская премия в году. До сих пор циклотроны применяются для ускорения тяжёлых частиц до относительно небольших энергий, до 50МэВ/нуклон.

Бетатрон

Другое название: индукционный ускоритель. Циклический ускоритель, в котором ускорение частиц осуществляется вихревым электрическим полем, индуцируемым изменением магнитного потока, охватываемого орбитой пучка. Поскольку для создания вихревого электрического поля необходимо изменять магнитное поле сердечника, а магнитные поля в несверхпроводящих машинах обычно ограничены эффектами насыщения железа на уровне ~20кГс, возникает ограничение сверху на максимальную энергию бетатрона. Бетатроны используются преимущественно для ускорения электронов до энергий 10-100 МэВ (максимум достигнутой в бетатроне энергии 300 МэВ).

Впервые бетатрон был разработан и создан Видероэ в году, который, однако, ему не удалось запустить. Первый надёжно работающий бетатрон был создан Д. В. Керстом лишь в - гг. в США.

Микротрон

Основная статья : Микротрон

Он же - ускоритель с переменной кратностью. Резонансный циклический ускоритель с постоянным как у циклотрона ведущим магнитным полем и частотой ускоряющего напряжения. Идея микротрона состоит в том, чтобы сделать приращение времени оборота частицы, получающееся за счёт ускорения на каждом обороте, кратным периоду колебаний ускоряющего напряжения.

Фазотрон (синхроциклотрон)

Принципиальное отличие от циклотрона - изменяемая в процессе ускорения частота электрического поля. Это позволяет, за счёт автофазировки, поднять максимальную энергию ускоряемых ионов по сравнению с предельным значением для циклотрона. Энергия в фазотронах достигает 600-700 МэВ.

Синхрофазотрон

Циклический ускоритель с постоянной длиной равновесной орбиты. Чтобы частицы в процессе ускорения оставались на той же орбите, изменяется как ведущее магнитное поле, так и частота ускоряющего электрического поля. Большинство современных циклических ускорителей являются сильнофокусирующими синхрофазотронами. Для ультрарелятивистских электронов в процессе ускорения частота обращения практически не меняется, и используются синхротроны.

Синхротрон

Циклический ускоритель с постоянной длиной орбиты и постоянной частотой ускоряющего электрического поля, но изменяющимся ведущим магнитным полем.

Лазер на свободных электронах (ЛСЭ)

Основная статья : Лазер на свободных электронах

Специализированный источник когерентного рентгеновского излучения.

Линейный ускоритель

Также часто называется ли́нак (сокращение от LINear ACcelerator). Ускоритель, в котором частицы пролетают однократно. Линейные ускорители чаще всего используются для первичного ускорения частиц, полученных с электронной пушки или источника ионов. Однако, идея линейного коллайдера на полную энергию также не нова. Основным преимуществом линаков является возможность получения ультрамалых эмиттансов и отсутствие потерь энергии на излучение, которые растут пропорционально четвёртой степени (!) энергии частиц.

Колла́йдер

Он же ускоритель на встречных пучках. Чисто экспериментальные установки, цель которых - изучение процессов столкновения частиц высоких энергий.

Применение

  • Стерилизация (для стерилизации продуктов питания, медицинского инструмента).
  • Медицина (лечение онкологических заболеваний , радиодиагностика).
  • Производство полупроводниковых устройств (инжекция примесей).
  • Радиационная дефектоскопия.
  • Радиационное сшивание полимеров.
  • Радиационная очистка топочных газов и сточных вод.

См. также

  • Детектор частиц

Ссылки

  • Коломенский Д.Д., Лебедев А. Н. Теория циклических ускорителей. М.: Физматгиз, 1962.
  • A.Chao, M.Tigner, Handbook of Accelerator Physics and Engineering, 1999.
  • Б.С. Ишханов, И.М. Капитонов, Э.И. Кэбин, Эксперимент (Web-публикация)
  • История, классификация, принцип действия, основные типы современных ускорителей

Wikimedia Foundation . 2010 .

Смотреть что такое "Ускоритель частиц" в других словарях:

    УСКОРИТЕЛЬ ЧАСТИЦ, см. УСКОРИТЕЛЬ …

    ускоритель частиц - — [А.С.Гольдберг. Англо русский энергетический словарь. 2006 г.] Тематики энергетика в целом EN particle accelerator …

    Установка, в которой с помощью электрических и магнитных полей получаются направленные пучки электронов, протонов, ионов и других заряженных частиц с энергией, значительно превышающей тепловую энергию. В процессе ускорения повышаются скорости… … Энциклопедия Кольера

    ускоритель частиц - dalelių greitintuvas statusas T sritis fizika atitikmenys: angl. particle accelerator vok. Teilchenbeschleuniger, m rus. ускоритель частиц, m pranc. accélérateur de particules, m … Fizikos terminų žodynas

    - (ускоритель элементарных частиц), в ФИЗИКЕ ЭЛЕМЕНТАРНЫХ ЧАСТИЦ устройство для увеличения энергии заряженных частиц путем увеличения их скорости при помощи переменных электрических полей в вакуумной камере. Для того, чтобы энергия частиц… … Научно-технический энциклопедический словарь

    Заряженных частиц установка для получения частиц высоких энергий в физике и технике Ускоритель (в ракетной технике) движитель ракеты Ускоритель (графический) устройство для ускорения работы видеоадаптера в компьютере Ускоритель (клавиатурный)… … Википедия

    ускоритель (заряженных частиц) - Электрофизическое устройство, предназначенное для увеличения кинетической энергии заряженных частиц. Примечание Принято, что в ускорителях энергия частиц увеличивается более чем на 0,1 МэВ. [ГОСТ Р 52103 2003] Тематики ускорители заряженных… … Справочник технического переводчика

    ускоритель с переменно-фазовой фокусировкой - Линейный резонансный ускоритель с трубками дрейфа, в котором высокочастотное электромагнитное поле используется для ускорения, группировки и фокусировки частиц, причем возможно чередование ускоряющих и фокусирующих зазоров между трубками дрейфа.… … Справочник технического переводчика

    ускоритель с пространственно-однородной квадрупольной фокусировкой - Линейный резонансный ускоритель, в котором высокочастотное электромагнитное поле используется для ускорения, группировки и фокусировки частиц, причем ускоряющее поле имеет квадрупольную симметрию. Примечание Возможные модификации таких… … Справочник технического переводчика

    ускоритель заряженных частиц - — [А.С.Гольдберг. Англо русский энергетический словарь. 2006 г.] Тематики энергетика в целом EN charged particle accelerator … Справочник технического переводчика